
EECS598-001
Approximation Algorithms & Hardness of Approximation

Pingbang Hu

March 9, 2024

Abstract

This is an advanced graduate-level algorithm course taught by Euiwoong Lee at University of Michigan.
Topics include both approximation algorithms like covering, clustering, network design, and constraint
satisfaction problems (the first half), and also the hardness of approximation algorithms (the second
half).

The first half of the course is classical and well-studied, and we’ll use Williamson and Shmoys [WS11],
Vazirani [Vaz02] as our reference. The second half of the course is still developing, and we’ll look into
papers by Barak and Steurer [BS14], O’donnell [ODo21], etc.

This course is taken in Fall 2022, and the date on the cover page is the last updated time.

https://web.eecs.umich.edu/~euiwoong/

Contents

1 Introduction 2
1.1 Computational Problem . 2
1.2 Efficient Algorithms . 2
1.3 Approximation Algorithms . 3
1.4 Hardness . 4

2 Covering 5
2.1 Set Cover . 5
2.2 Greedy Method . 6
2.3 Linear Programming Rounding . 7
2.4 Covering-Packing Duality . 10
2.5 Primal-Dual Method . 11
2.6 Feedback Vertex Set . 12

3 Clustering 18
3.1 Introduction . 18
3.2 Facility Location . 18
3.3 k-Median . 26
3.4 Euclidean k-Median . 33

4 Traveling Salesman Problem 37
4.1 Spanning Tree . 37
4.2 Negative Correlation . 41
4.3 Asymmetric Traveling Salesman Problem . 42
4.4 Symmetric Traveling Salesman Problem . 49
4.5 Beyond the 3/2 Barrier for STSP . 51

5 Semidefinite Programming and Lasserre Hierarchy 57
5.1 Semidefinite Programming . 57
5.2 Lasserre Hierarchy . 60
5.3 Graph Coloring . 66

6 Hardness of Approximation 72
6.1 Approximation Complexity . 72
6.2 Probabilistically Checkable Proofs . 74
6.3 FGLSS Graph . 76
6.4 Label Cover . 78

7 Unique Games and the Conjecture 82
7.1 Optimal Hardness for 3LIN and 3SAT . 82
7.2 Fourier Analysis of Boolean Functions . 83
7.3 BLR Test and the Noisy BLR Test . 85
7.4 Unique Games . 88
7.5 Hardness of Max-Cut . 92

A Review 99
A.1 Boolean Satisfaction Problem . 99

1

Chapter 1

Introduction

Lecture 1: Overview and Set Cover
29 Aug. 10:301.1 Computational Problem

We’re interested in the following optimization problem: Given a problem with an input, we want to
either maximize or minimize some objectives. This suggests the following definition.

Definition 1.1.1 (Computational problem). A computational problem P is a function from input I
to (X, f), where X is the feasible set of I and f is the objective function.

We see that by replacing f with −f , we can unify the notion and only consider either minimization
or maximization, but we will not bother to do this.

Example (s-t shortest path). The s-t shortest path problem P can be formalized as follows. Given
input I, it defines

• Input: Graph G = (V, E) and two vertices s, t ∈ V.

• Feasible set: X = {set of all (simple) paths s to t}.

• objective function: f : X → R where f(x) = length(x) (# of edges of x).

The output of P should be some x ∈ X (i.e., some valid s-t paths) such that it minimizes f(x).

We see that the computational problem we focus on is an optimization problem, and more specifically,
we’re interested in combinatorial optimization.

Definition 1.1.2 (Combinatorial optimization). A combinatorial optimization problem is a problem
where the feasible set X is a finite set.

Example (s-t shortest path). The s-t shortest path problem is a combinatorial optimization problem
since given a graph G with n = |V|, m = |E|, there are at most n! different paths, i.e., |X| ≤ n! <∞.

Note. We’ll also look into some continuous optimization problem, where X is now infinite (or even
uncountable). For example, find x ∈ R that minimizes f(x) = x2 + 2x + 1. In this case, X = R
which is uncountable (hence infinite).

1.2 Efficient Algorithms
Given a problem P , we want to solve it fast with algorithms. Before we characterize the speed of an
algorithm, we should first define what exactly an algorithm is.

2

Lecture 1: Overview and Set Cover

Definition 1.2.1 (Algorithm). Given a problem P and input I (which defines X and f), an algorithm
A outputs solution y = A(I) such that y ∈ X and y = argmaxx∈X f(x) or argminx∈X , depending
on I.

Definition 1.2.2 (Efficient). We say that an algorithm A is efficient if it runs in polynomial time.

Remark (Runtime parametrization). The runtime of an algorithm A should be parametrized by the
size of input I. Formally, given input I represented in s bits, runtime of A on I should be poly(s)
for A to be efficient.

Note. In most cases, there are 1 or 2 parameters that essentially define the size of input.

Example (Graph). A natural representation of a graph with n vertices and m edges are

(a) Adjacency matrix: n2 numbers.

(b) Adjacency list: O(m+ n) numbers.

Example (Set system). A set system with n elements and m sets has a natural representation
which uses O(nm) numbers.

Example. If an input I can be represented by s bits, then the runtime of an algorithm can be
O(s log s), O(s2), or O(s100), which are considered as efficient. On the other hand, something like
2s or s! are not.

Hence, our goal is to get poly((n,m))-time algorithm!

1.3 Approximation Algorithms
We first note that many interesting combinatorial optimization problems are NP-hard, hence it’s impos-
sible to find optimum in polynomial time unless P is NP. This suggests one problem: How well can we
do in polynomial time?

In normal cases, we may assume that objective function value is always positive, i.e., f : X → R∗∪{0}.
Then, we have the following definition which characterize the slackness.

Definition 1.3.1 (Approximation algorithm). Given an algorithm A, we say A is an α-approximation
algorithm for a problem P if for every input I of P ,

• Min: f(A(I)) ≤ α · OPT(I) for α ≥ 1

• Max: f(A(I)) ≥ α · OPT(I) for α ≤ 1

where we define OPT(I) as maxx∈X f(x) for maximization, minx∈X f(x) if minimization.

We see that α characterizes the slackness allowed for our algorithm A. Now, we’re ready to look at
some interesting problems. Broadly, there are around 10 classes of them which are actively studied:

• We’ll see cover, clustering, network design, and constraint satisfaction problems.

• We’ll not see: graph cuts, Packing, Scheduling, String, etc.

The above list is growing! For example, applications of continuous optimization in combinatorial
optimization is getting attention recently. Also, there are around 8 techniques developed, e.g., greedy,
local search, LP rounding, SDP rounding, primal-dual, cuts and metrics, etc.

CHAPTER 1. INTRODUCTION 3

Lecture 1: Overview and Set Cover

1.4 Hardness
For most problems we saw, we can even say that getting an α-approximation is NP-hard for some α > 1.
This bound is sometimes tight, but not always, and we’ll focus on this part in the second half of this
course.

CHAPTER 1. INTRODUCTION 4

Chapter 2

Covering

2.1 Set Cover
Before we jump into any problem formulations, we define a fundamental object in combinatorial opti-
mization, the set system.

Definition 2.1.1 (Set system). Given a ground set Ω (often called universe), the set system is an
order pair (Ω,S) where S is a collection of subsets of Ω.

Note. For a set system (Ω,S), we often let m := |S| and n := |Ω|.

Definition 2.1.2 (Degree). Given a set system (Ω,S), the degree of x ∈ Ω, deg(x), is defined as

deg(x) := |{S ∈ S | x ∈ S}| .

Remark (Bipartite representation). Naturally, for a set system, we have a bipartite representation.

e1

e1

S1e2
e3

e4
e5

e6

e7

S1 S2

S3

S4

e2
e3
e4
e5
e6
e7

S2

S3

S4

SetElement

Figure 2.1: Bipartite representation of a set system.

Denote d := maxe∈U deg(e) ≤ m and k := maxi∈[m] |Si| ≤ n, which is just the maximum vertex
degree on two sides of the bipartite graph representation of this set system.

Finally, we have the following.

Definition 2.1.3 (Covering). A covering S ′ ⊆ S of (Ω,S) is a (sub)collection of subsets such that⋃
S∈S′ S = Ω.

Let’s first consider the classical problem called set cover.

Problem 2.1.1 (Set cover). Given a finite set system (U,S) where S := {Si ⊆ U}mi=1 along with a
weight function w : S → R+, find a covering S ′ while minimizing

∑
S∈S′ w(S).

5

Lecture 2: Linear Programming with Set Covers

Assuming there always exists at least one covering, we can in fact get two types of non-comparable
approximation ratio in terms of k and d. Specifically, we get log k and d-approximation ratio via either
greedy, LP rounding or dual-methods.

2.2 Greedy Method
We first see the algorithm when w(S) = 1 for all S ∈ S.

Algorithm 2.1: Set cover – Greedy
Data: A set system (U,S)
Result: A covering S ′

1 S ′ ← ∅, i← 0
2 while U ̸= ∅ do // O(n)
3 Choose Si with maximum |U ∩ Si| // O(mn)
4 for e ∈ U ∩ Si do
5 ye ← w(Si)/ |U ∩ Si| // Average costs

6 S ′ ← S ′ ∪ {Si}
7 U ← U \ Si

8 i← i+ 1

9 return S ′

We focus on the case that w(S) = 1 for all S.

Remark. It’s clear that Algorithm 2.1 is a polynomial time algorithm, also, the output S ′ is always
a valid covering.

Theorem 2.2.1. Algorithm 2.1 is an Hk-approximationa algorithm.

aHk is the so-called harmonic number, which is defined as
∑k

i=1 1/i ≤ ln k + 1.

Proof. Denote the OPT as S∗ := {S∗
1 , . . . , S

∗
ℓ }, and first note that the average cost ye essentially

maintains
∑

e∈U ye = |S ′|, hence we just need to bound ye w.r.t. S∗. To do this, for any S∗ ∈ S∗,
say S∗

1 =: {e1, . . . , ek} where we number ei in terms of the order of which being deleted, i.e., e1 is
deleted first from U (line 7), etc.

Note. S∗
1 can have less than k element, but in that case similar argument will follow. Also, if

some elements are deleted at the same time, we just order them arbitrarily.

Then, we have the following claim.

Claim. For all ei, yei ≤ 1
k−i+1 .

Proof. Consider the iteration when ei was picked by S′, i.e., |U ∩ S′| ≥ |U ∩ S∗
1 | ≥ k − i + 1,

then by definition (line 7) we have yei =
1

|U∩S′| ≤
1

|U∩S∗
1 |
≤ 1

k−i+1 . ⊛

We immediately see that whenever the optimal solution pays 1 (for choosing S∗
1 for instance),

Algorithm 2.1 pays at most Hk since
∑

ei∈S∗
1
yei ≤

∑k
i=1

1
k−i+1 = Hk, or more formally,

|S ′| =
∑
e∈U

ye ≤
∑

S∗
i ∈S∗

∑
e∈S∗

i

ye︸ ︷︷ ︸
≤Hk

≤ ℓ ·Hk = Hk · |OPT| ,

which finishes the proof. ■

In all, observe that Hk ≤ ln k + 1, we see that Algorithm 2.1 is a (ln k)-approximation algorithm.
Also, the weighted version can be easily derived by replacing 1 with the corresponding weight.

CHAPTER 2. COVERING 6

Lecture 2: Linear Programming with Set Covers

Lecture 2: Linear Programming with Set Covers
31 Aug. 10:302.3 Linear Programming Rounding

To get a d-approximation algorithm, instead of seeing the greedy algorithm, we first see the LP1 dual
method, which turns out to be exactly the same as the greedy algorithm.

As previously seen. Both linear programming and convex programming can be solved in polynomial
time.

Notice that it’s more natural to define set cover in terms of ILP (integer LP). Define our integer
variables {xi}i∈[n] such that

xi =

{
1, if Si ∈ S ′;
0, otherwise.

In this way, we have the following ILP formulation for set cover as

min
∑
i

wi · xi∑
Si∋e

xi ≥ 1 ∀i ∈ U

(IP) xi ∈ {0, 1} ∀i.

But we know that this is a NP-hard problem, so we relax it to be

min
∑
i

wi · xi∑
Si∋e

xi ≥ 1 ∀i ∈ U

(LP) xi ≥ 0 ∀i.

Write it in a more compact form, we have

min ⟨w, x⟩
Ax ≥ 1

x ≥ 0

where A ∈ Rn×m such that

Aij =

{
1, if ei ∈ Sj ;

0, otherwise.

Note. Note when we do relaxation, we want x ∈ fes(IP) ⇒ x ∈ fes(LP), i.e., fes(LP) ⊇ fes(IP).
Note that in this case, for a minimization problem, we have

f(x) = OPTLP ≤ OPTIP .

In this case, we see that the most natural way to get an integer solution from the fractional solution
obtained from the relaxed LP is to round x to integral solution. This leads to the following algorithm.
Algorithm 2.2: Set cover – LP Rounding
Data: A set system (U,S)
Result: A covering S ′

1 x← solve(LP) // Solve the relaxed (LP)
2 S ′ ← {Si : xi ≥ 1/d}
3 return S ′

We now prove the correctness and Algorithm 2.2’s approximation ratio.
1See MATH561 for a complete reference.

CHAPTER 2. COVERING 7

https://www.pbb.wtf/posts/Notes#linear-programming-math561ioe510to518-umich

Lecture 2: Linear Programming with Set Covers

Lemma 2.3.1. S ′ is a covering.

Proof. Fix e ∈ U , let S1, . . . , Sd be the sets containing e. We see that

d∑
i=1

xi ≥ 1⇒ ∃j ∈ [d] s.t. xj ≥
1

d
⇒ Sj ∈ S ′.

■

Theorem 2.3.1. Algorithm 2.2 is d-approximation algorithm.

Proof. By comparing w(S ′) and OPTLP =
∑m

i=1 xiwi, we see that

OPT ≤
∑

Si∈S′

wi ≤ d
∑

Si∈S′

wixi ≤ d · OPTLP ≤ d · OPT,

which implies OPT /d ≤ OPTLP ≤ OPT.

Note. Note that OPT is assumed to be OPTIP, i.e., the optimum of the original IP formulation
of Problem 2.1.1.

■

Definition 2.3.1 (Intgrality gap). Given an integer programming, the integrality gap between OPT
and OPTLP of its LP relaxation is defined as

sup
input I

OPT(I)
OPTLP(I)

.

Remark. We see that the integrality gap of Algorithm 2.2 is d from Theorem 2.3.1.

2.3.1 Randomized Linear Programming Rounding
And indeed, we can use a more natural way to do the rounding, i.e., respect to the xi value.

Intuition. If xi is close to 1, it’s reasonable to include it, vice versa.

We see that algorithm first.
Algorithm 2.3: Set cover – Randomized LP Rounding
Data: A set system (U,S)
Result: A (possible) covering S ′

1 x← solve(LP) // Solve the relaxed (LP)
2 S ← ∅
3 for i = 1, . . . ,m do
4 add Si to S ′ w.p. xi // independently

5 return S ′

Now, the question is, how is this S ′’s quality? In other words, fix e ∈ U , what’s Pr(e is covered)?

Lemma 2.3.2. Pr(e is covered) ≥ 1− 1/e ≈ 0.63.

Proof. We bound Pr
(
e is covered

)
instead. Say S1, . . . , Sd are the sets containing e, then we see

CHAPTER 2. COVERING 8

Lecture 2: Linear Programming with Set Covers

that

Pr
(
e is covered

)
=

d∏
i=1

(1− xi) ≤
d∏

i=1

e−xi = e−(

≥1︷ ︸︸ ︷
x1 + . . . xd) ≤ e−1.

Note. For every x, we have 1 + x ≤ ex, and this approximation is close when |x| is small.

■
A standard way to boost the correctness of a randomized algorithm is to run it multiple time, which

leads to the following.
Algorithm 2.4: Set cover – Multi-time Randomized LP Rounding
Data: A set system (U,S), α
Result: A (possible) covering S ′

1 x← solve(LP) // Solve the relaxed (LP)
2 S ← ∅
3 for t = 1, . . . , α do // independently
4 for i = 1, . . . ,m do
5 add Si to S ′ w.p. xi // independently

6 return S ′

Lemma 2.3.3. With α = 2 lnn, S ′ returned from Algorithm 2.4 is a covering w.p. at least 1− 1
n .

Proof. We have Pr(e is not covered) ≤ e−α from independence of each run. Let α = 2 lnn, then
Pr(e is not covered) ≤ e−α = 1/n2. By union bound,

Pr(some elements is not covered) ≤
∑
e∈U

Pr(e not covered) ≤ n · 1

n2
=

1

n
.

This implies w.p. at least 1− 1/n, S ′ is a covering. ■

In other words, with α = 2 lnn, Algorithm 2.4 is correct with probability at least 1− 1/n.

Lemma 2.3.4. With α = 2 lnn, S ′ returned from Algorithm 2.4 has an approximation ratio 4 lnn
w.p. at least 1

2 .a

aNote that S′ is not necessary a covering.

Proof. Since E[w(S ′)] ≤ α
∑

i wixi = αOPTLP, we have Pr(w(S ′) ≥ 2 · αOPTLP) ≤ 1/2 from
Markov inequality. We see that w.p. ≥ 1/2, w(S ′) ≤ 2 · 2 lnn · OPTLP ≤ 4 lnnOPT. ■

Theorem 2.3.2. By running Algorithm 2.4 many times, we get a (4 lnn)-approximation algorithm
with high probability.a

aNote that we still need to choose S′.

Proof. Together with Lemma 2.3.3 and Lemma 2.3.4 and using the union bound, the probability of
S ′ not being a covering or with weight higher than 4 lnnOPT is at most 1

n + 1
2 , which is less than 1.

Hence, by running Algorithm 2.4 many times (independently), the failing possibility is exponential
small. ■

Note. With Theorem 2.3.2, we still need to find a valid covering with the lowest cost, where a valid
covering with low enough weight is guaranteed to exist with high probability. Note that this is still
a polynomial time algorithm since we know that checking S ′ is a covering is just linear.

CHAPTER 2. COVERING 9

Lecture 3: Covering-Packing Duality and Primal-Dual Method

Remark. Indeed, with some smarter algorithm modified from Algorithm 2.4, we can get an Hk

approximation ratio.

Lecture 3: Covering-Packing Duality and Primal-Dual Method
7 Sep. 10:302.4 Covering-Packing Duality

We first define some useful notions.

Definition 2.4.1 (Strongly independent). Given a set system (U,S), we say C ⊆ U is strongly inde-
pendent if there does not exist S ∈ S such that |C ∩ S| ≥ 2.

Remark. Then for any strongly independent set C ⊆ U , we know that OPTSC ≥ |C|.a

aSC denotes set cover.

Now, we’re trying to find the strongest witness of strongly independent set, which suggests we
define the following problem.

Problem 2.4.1 (Maximum strongly independent set). Given a set system (U,S), we want to find the
largest strongly independent set.

Remark. For any set system, we have OPTSIS ≤ OPTSC.a

aSIS denotes maximum strongly independent set.

As previously seen (LP dual). Recall how we get the dual of a given LP:

min c⊤x max y⊤b

Ax ≥ b y⊤A ≤ c⊤

(P) x ≥ 0 (D) y ≥ 0.

Also, recall the weak duality (OPTP ≥ OPTD) and strong duality (OPTP = OPTD).

Definition 2.4.2 (Covering LP). A primal LP with A, b, c ≥ 0 is called a covering LP.

Definition 2.4.3 (Packing LP). A dual LP with A, b, c ≥ 0 is called a packing LP.

We now give another LP formulation for the unweighted set cover. Given S = {S1, . . . , Sm}, U =
{e1, . . . , en} and define A ∈ Rn×m such that

Aij =

{
1, if ei ∈ Sj ;

0, otherwise.

Then our LP is defined as

min

m∑
j=1

xj max

n∑
i=1

yi

Ax ≥ 1 y⊤A ≤ 1

(P) x ≥ 0 (D) y ≥ 0.

We see that if we restrict yi ∈ {0, 1}, we see that the dual (D) is just Problem 2.4.1. This can be

CHAPTER 2. COVERING 10

Lecture 3: Covering-Packing Duality and Primal-Dual Method

seen via writing the constraint explicitly:

n∑
i=1

Aijyi ≤ 1⇔
∑

i : ei∈Sj

yi ≤ 1 for j ∈ [m].

And indeed, if we look at the weighted version, we have
∑

i : ei∈sj
yi ≤ w(Sj).

Now, recall the claim in Theorem 2.2.1, i.e., yei ≤
w(Sj)
k−i+1 . We see that the yei are just the dual variables

in our setup. Additionally, with the observation that we can do this for any set S = {e1, . . . , ek} ∈ S,
we have the following lemma.

Lemma 2.4.1. The variable y′ := y/Hk is dual-feasible, i.e., it’s feasible for (D).

Proof. We see that yei ≥ 0 (and hence yi) trivially, so we only need to show that

n∑
i=1

Aijy
′ =

n∑
i=1

Aij
yei
Hk
≤ w(Sj)

for j ∈ [m]. But this is trivial by plugging in yei ≤
w(Sj)
k−i+1 as shown in Theorem 2.2.1, hence

n∑
i=1

Aij
yei
Hk
≤ 1

Hk

n∑
i=1

Aij
w(Sj)

k − i+ 1
≤ 1

Hk

k∑
i=1

w(Sj)

k − i+ 1
= w(Sj),

and we’re done.a ■
aNote that in the above derivation, i is kind of overloading, i.e., ei corresponding to only some i (confusing, but

it’s how it is...).

With Lemma 2.4.1, we simply run Algorithm 2.1 while maintaining ye for every e, and we’re done.

Theorem 2.4.1. Algorithm 2.1 is an Hk-approximation algorithm in the view of its dual.

Proof. Same as Theorem 2.2.1, but now we have different interpretation. Specifically, if y′ = y/Hk

is dual-feasible, we know that the corresponding objective value of y′ is at most OPTLPD
= OPTLPP

,
which is at most OPTSC further. Now, since we’re dealing with LP, everything is linear includes
the objective value, i.e., y is at most Hk · OPTSC. ■

Remark (Dual fitting). The above method is called dual fitting, which is universal as one can easily
see. The way to do this is the following.

1. Given an algorithm, distribute the algorithm to {yi}.

2. Prove that y/α is dual-feasible.

3. This shows the algorithm is α-approximation algorithm.

2.5 Primal-Dual Method
We first see the general description of the so-called primal-dual method.

1. Maintain x (primal solution) and y (dual solution) where x is integral and infeasible, while y is
fractional and feasible. Start from x = y = 0.

2. Somehow increase y until some dual constraints get tight.

3. Choose primal variables correspond to tight dual constraints, and update input accordingly.

CHAPTER 2. COVERING 11

Lecture 4: Feedback Vertex Set

Remark. We’re using dual variables to get a certificate of the lower bound of the optimal problem
we’re solving.

In terms of set cover, we have the following.
Algorithm 2.5: Set cover – Primal-Dual
Data: A set system (U,S)
Result: A covering S ′

1 S ′ ← ∅, y ← 0
2 while U ̸= ∅ do
3 Choose any e ∈ U
4 Raise ye until some constraints get tight
5 S ′ ← S ′ ∪ {sets corresponding to tight dual constraints}
6 Update U // Remove newly covered element in U

7 return S ′

Remark. Algorithm 2.5 is correct and can be implemented efficiently.

Theorem 2.5.1. Algorithm 2.5 is a d-approximation algorithm.

Proof. Firstly, y is feasible. And we see that

w(S ′) =
∑
S∈S′

w(S) =
∑
S∈S′

∑
e∈S

ye ≤ d ·
∑
e∈U

ye ≤ d · OPTLPD
= d · OPTLPP

≤ d · OPTSC .

■

Lecture 4: Feedback Vertex Set
12 Sep. 10:302.6 Feedback Vertex Set

Following the discussion on primal-dual method, we see another covering problem.

2.6.1 Introduction
We consider the following problem.

Problem 2.6.1 (Feedback vertex set). Given a graph G = (V, E) and a weight function c : V → R+,
we want to find F ⊆ V with min c(F) such that G[V \ F] has no cycle.a

aThis is equivalent as saying that G[V \ F] is a forest.

Note (Feedback). The name feedback comes from the fact that if there’s a cycle in G, then it kind
of creates feedback.

Note (Edge version). The edge version of Problem 2.6.1 can be solved by finding T ⊆ E be the
maximum weight forest,a and let F := E \ T .

aThis can be found exactly in polynomial time.

Notation. In this lecture, when talking about cycle, we’re referring to the vertices in which. But
the meaning can vary from context to context.

CHAPTER 2. COVERING 12

Lecture 4: Feedback Vertex Set

Remark. This is a special case of Problem 2.1.1.

Proof. Let C := {set of all (simple) cycles} and consider Problem 2.1.1 on the set system (C,V),
i.e., we want to find F ⊆ V such that ∀C ∈ C, |F ∩ C| ≥ 1. ⊛

Note. The naive algorithm by directly applying methods discussed for Problem 2.1.1, we see that
since min(log k, d) = Ω(n) for k being the maximum set size (which is 2Ω(n)) and d = n, the
approximation ratio we can get is Ω(n), which depends on the size of the input.

Now, the goal in this section is to show the following.

Theorem 2.6.1. There exists a 4-approximation algorithm for Problem 2.6.1.

Remark. Actually, there exists a 2-approximation algorithm.

We also have a hardness of Problem 2.6.1.

Theorem 2.6.2. Achieving (2 − ϵ)-approximation algorithm if NP-hard for all ϵ > 0 assuming the
unique games conjecture.

Proof. See Homework 1. ■

2.6.2 Cycle Covering LP
The most natural LP which models Problem 2.6.1 is the so-called cycle covering LP, which can be defined
as

min
∑
v∈V

c(v)xv∑
v∈C

xv ≥ 1 ∀ cycle C ∈ C

x ≥ 0,

with the variables being {xv}v∈V such that xv = 1v∈F .

Remark. We see that this cycle covering LP has 2Ω(n) constraints. But we can actually solve this
and get an O(log n)-approximation ratio by smartly rounding the solution.a And we can show that
this approximation ratio is optimal in terms of this particular LP.

aSee homework 1.

2.6.3 Density LP
A more sophisticated LP is the so-called density LP, defined as

min
∑
v∈V

c(v)xv∑
v∈S

xv(d
S
v − 1) ≥ |E(S)| − |S|+ 1 ∀S ⊆ V

x ≥ 0

with the variables being {xv}v∈V .

Notation. The E(S) denotes the edge set in the induced graph G[S] = (S,E(S)), while dSv denotes
the degree of v in G[S].

CHAPTER 2. COVERING 13

Lecture 4: Feedback Vertex Set

Intuition. The constraint is equivalent as saying that for every induced graph, #e ≤ #v − 1, i.e.,
we require it to be a forest. Explicitly, S ⊆ V,

|E(S)| −
∑
v∈S

xvd
S
v ≤ |S| −

∑
v∈S

xv − 1.

Note that in the constraint, the right-hand side is just a lower-bound of #e.

We see that the above LP is not exactly a covering LP since the coefficients can be negative if a set
S is not irreducible.

Definition 2.6.1 (Irreducible). The set S ⊆ V is irreducible if for all v ∈ S, v belongs to some cycles
in G[S].

Now, it’s clear that by looking at S = {S ⊆ V | S is irreducible}, we have a covering LP defined as

min
∑
v∈V

c(v)xv∑
v∈S

xv(d
S
v − 1) ≥ |E(S)| − |S|+ 1 =: bS ∀S ∈ S

x ≥ 0.

We first see why this LP models Problem 2.6.1.

Lemma 2.6.1. The integer version of density LP (denote as IP) is equivalent to Problem 2.6.1.

Proof. If x is feasible for Problem 2.6.1, then x is feasible for the IP. On the other hand, if x is
feasible for IP, then for every cycle C ∈ C, x deletes at least 1 vertex from C. ■

2.6.4 Primal-Dual Method
Now we’re ready to solve this LP via primal-dual method. Denote the dual variables as {yS}S∈S , then
the dual is

max
∑
S∈S

ySbS∑
S∋v

(dSv − 1)yS ≤ c(v) ∀v ∈ V

y ≥ 0.

Note. For the density LP and its dual, the constraint is still exponentially many, and no one knows
how to solve this. But the power of primal-dual method is that we don’t really solve this, rather,
we just maintain two sets of solutions for both primal and dual. Moreover, we can maintain the
primal solution in integral, while the dual solution in fractional.

We now have the following algorithm.

CHAPTER 2. COVERING 14

Lecture 4: Feedback Vertex Set

Algorithm 2.6: Feedback vertex set – Primal-Dual
Data: A graph G = (V, E)
Result: A minimal feedback vertex set F ′

1 S ← V, c′ = c, y ← 0 // c′ ∈ Rn keeps track of slackness of c
2

3 while S ̸= ∅ do
4 S ← reduce(S) // Compute {v ∈ S : v belongs to some cycles in G[S]}
5 (α, v)← minv∈S c

′(v)/(dSv − 1)a // yS gets tight by increasing unit weight
6 yS ← α

7 c′(v)← c′(v)− α(dSv − 1)
8 Z ← {v ∈ S : c′(v) = 0}
9 F ← F ∪ Z, S ← S \ Z

10

11 // Compute a minimal feedback vertex set
12 F ′ ← F = {v1, . . . , vℓ} // v1 is deleted first, vℓ is deleted last
13 for i = ℓ, . . . , 1 do // reversed greedy
14 if F ′ \ {vi} is a feedback vertex set for G then
15 F ′ ← F ′ \ {vi}

16 return F ′

aNote that we also get the argument v.
We see that in Algorithm 2.6, we first use primal-dual method to obtain a feasible feedback vertex

set, and then run a reversed greedy algorithm to further ensure we get a good approximation ratio.

Claim. F is a feedback vertex set and y is dual-feasible.

Proof. It should be clear that why F is a feedback vertex set. As for the reason why y is dual-
feasible, observe that we have one constraint for each v. After raising yS for chosen v in line 6
and deduce c′(v) in line 7, v will get removed so the constraint corresponding to v will be satisfied
throughout. ⊛

Remark (Reversed greedy). The method we turn F into its minimal is called reversed greedy. This
just checks that if we remove a vertex v from F ′ while F ′ is still feasible, then we just do it.
Additionally, we iterate through v in the reversed order w.r.t. how v is being added into.

We want to compare the primal cost and the dual cost. The primal cost is

c(F) =
∑
v∈F

c(v) =
∑
v∈F

∑
S∋v

(dSv − 1)yS =
∑
S∈S

yS
∑

v∈F∩S

(dSv − 1),

while the dual cost is
∑

S∈S ySbS .

Remark. This is where the primal-dual method is powerful. i.e., by switching the order of summa-
tion, if we have some ratio of

∑
v∈F∩S(d

S
v − 1) and bS for every S, we’re done. On caveat is that

since S is changing when running Algorithm 2.6, so the final solution F may not be good for this
particular S. We need to guarantee some ratio for this F for all S.a

aAt least for S with positive yS .

Lemma 2.6.2. For all S ∈ S, if F is minimal in S,a then we have∑
v∈S∩F

(dSv − 1) ≤ 4 · bS = 4(|E(S)| − |S|+ 1).

ai.e., in G[S], no F ′ ⊊ F ∩ S in feedback vertex set.

CHAPTER 2. COVERING 15

Lecture 4: Feedback Vertex Set

Proof. Let’s first see a simple case.

Intuition. If the graph is 3-regular, then we see that the left-hand side is ≤ 2 · |S| by summing
over the whole S instead of S ∩F , while the right-hand side is 2 · |S|+4 since |E(S)| = 1.5 |S|.

This shows that in a 3-regular graph, deleting every vertex in S is actually 4-approximated.
And this intuition generalized to general graph with degree greater than 3.

Since we assume S to be irreducible, so we’re not interested in degree 0 or 1 vertices (there are
no such vertices in an irreducible S). So the only problematic guy is degree-2 vertex. And the only
place a degree-2 vertex can live is in a long path.

Figure 2.2: If there are two v ∈ F , by minimality of F , one of v will be strictly unnecessary to
break this path in a cycle.

Note. Observe that we only need to delete at most one vertex in any path, and sometimes this
may be loose since we can delete one branch node joining two paths, i.e., deleting 1 nodes for
two paths.

Let A be the set of degree 2 vertices, and B be the set of vertices with degree larger than 3.
Now, consider line segment in the graph. If ℓ is a line segment,

(a) |F ∩ ℓ| ≤ 1, i.e., we delete at most one point in ℓ.

(b) If F contains one of the endpoints of ℓ, then |F ∩ ℓ| = 0.

Since F is minimal, the left-hand side is

|A ∩ F |+
∑

v∈B∩F

(dSv − 1) ≤
∑

v∈B\F

dSv /2 +
∑

v∈B∩F

(dSv − 1) ≤
∑
v∈B

(dSv − 1),

where the first inequality comes from the fact that if we delete vertices in A, i.e., in the line segment,
then we know we don’t delete its end points, and by distributed that 1 cost into its two end points,
each 1/2.

1/2

1/2

Figure 2.3: Distribute the cost of F .

Similarly, in the right-hand side, the crucial term is

|E(S)| − |S| =
∑
v∈S

(dSv /2− 1) =
∑
v∈B

(dSv /2− 1)

where the last equality holds since for v ∈ A, the summand is just 2/2− 1 = 0. It’s clear that since
∀v ∈ B, dSv − 1 ≤ 4(dSv /2− 1), rearranging this inequality gives the result. ■

To show Theorem 2.6.1, it’s enough to have a minimal F , then the result follows form Lemma 2.6.1.
Hence, after obtaining F , Algorithm 2.6 further convert F into F ′ and try to obtain a minimal version
of F . Clearly, F ′ is still a feedback vertex set, and the minimality of F ′ is guaranteed by the following

CHAPTER 2. COVERING 16

lemma.

Lemma 2.6.3. F ′ is minimal in every Si, where Si is the corresponding S in Algorithm 2.6 when
vi is deleted.

Proof. Suppose this is not the case. Then there exists vj ∈ F ′ such that in G[Si], (F ∩ Si) \ {vj} is
still a feedback vertex set in G[Sj]. Notice that we only need to consider the case that i = j since
vj ∈ Si means i ≥ j from how we order them. In this case, Sj ⊆ Si, hence to check the minimality
of F ′ it’s enough to just consider the case that i = j. Hence, we consider (F ∩ Sj) \ {vj} instead.

Note. Here we only consider G[Sj], i.e., we want to say that if vj is not minimal in G[Sj], then
vj should really be deleted even w.r.t. the whole graph.

Now, observe the following picture in step j of line 13 with cycles contained vj :

Sj∈ F ′

∈ F \ F ′

/∈ F
vj

problematic cycle
(can’t exist)

Observe that the middle cycles in G[Sj] must exist from our assumption of (F ∩Sj)\{vj} being
still a feedback vertex set, i.e., if a cycle exists in G[Sj], then it must contain another nodes other
than vj that’s also in F ′. But we see that when we consider cycles outside G[Sj], we have the
following.

Claim. No vertices outside Sj which is also in F \ F ′ at step j of line 13

Proof. Since Sj is growing, i.e., for i ≤ j, Si ≤ Sj , and we just can’t delete something we
haven’t considered. ⊛

Claim. There are no cycles C ∋ vj such that C \ Sj is disjoint from F .

Proof. Observe that there are only two ways for a vertex being deleted from the graph, either
v ∈ Z, i.e., its dual constraint is tight, or v ∈ S is deleted since it prevent S being irreducible.
Only the latter case will make v /∈ F , we see that there’s no way such a cycle C exists with all
vertices outside Sj are preventing s being irreducible, since this cycle C itself is a cycle... ⊛

This implies F ′ \ {vj} is still a feedback vertex set in G when i = j in Algorithm 2.6 since such
a problematic cycle can’t exist,a which contradicts with the minimality of F ′. ■

aExplicitly, if this exists, then delete vj will make F ′ fail to intersect such a cycle.

Finally, we see that we can prove Theorem 2.6.1.
Proof of Theorem 2.6.1. Firstly, Algorithm 2.6 gives a 4-approximation of the density IP guaran-
teed by Lemma 2.6.2 and Lemma 2.6.3. Finally, from Lemma 2.6.1, we see that Problem 2.6.1 and
the density IP is equivalent, proving the theorem. ■

CHAPTER 2. COVERING 17

Chapter 3

Clustering

Lecture 5: Facility Location
14 Sep. 10:303.1 Introduction

The problem we’re interested in is called the clustering problem.

Problem 3.1.1 (Clustering). Given n objects, partition them into k groups such that

• Similar objects are in same group

• Different objects are in different group.

Note. We see that Problem 3.1.1 is vague in terms of the definition, which is because this is more
like a class of problems. We’ll see different notions of similar and different later when we consider
more explicit problems.

In particular, the notion of metric is useful.

Definition 3.1.1 (Metric). Given a set X, a function d : X ×X → R+ ∪ {0} is called a metric if

(a) d(·, ·) ≥ 0 and d(i, j) = 0 if and only if i = j.a

(b) d(i, j) = d(j, i) for all i, j ∈ X.

(c) d(i, j) + d(j, k) ≥ d(i, k) for all i, j, k ∈ X.
aWe didn’t mention this in lectures, but in math community this should also be included.

Remark (Metric space). Though we didn’t formally introduce, but the pair (X, d) of X and a metric
d on X is sometimes called a metric space.

3.2 Facility Location
Let’s first look at the problem.

Problem 3.2.1 (Facility location). Given a metric space (X, d) and P,Q ⊆ X, f ∈ R+ where P is
the set of clients, Q is the set of (possible) facilities, we want to open Q′ ⊆ Q such that it minimizes∑

i∈P minj∈Q′ d(i, j) + f |Q′|.a

aWe interpret the first summation as connection cost, the second term as opening cost.

18

Lecture 5: Facility Location

Example. Consider the following example.

clients
facilities

If f = 1 and we open the black facilities, then the cost is 2 + 5 = 7 assuming unit length.

We now write down the LP of Problem 3.2.1. Denote variables {yj}j∈Q and {xij}i∈P,j∈Q. Then the
LP can be written as

min
∑
ij

d(i, j)xij +
∑
j

yj · f∑
j

xij ≥ 1 ∀i ∈ P (αi)

xij ≤ yj ⇔ yj − xij ≥ 0 ∀i, j (βij)

(P) x, y ≥ 0.

Denote the dual variables as αi and βij , the dual is

max
∑
i

αi

αi − βij ≤ d(i, j) ∀i, j (xij)∑
i

βij ≤ f ∀j (yi)

(D) α, β ≥ 0.

Remark. If (α, β) is feasible, redefine βij := max(0, αi − d(i, j)), it’s still feasible and will not affect
the objective value. We see that we can drop β and only look at α.

We can then define the following useful notion called cluster.

Definition 3.2.1 (Cluster). A cluster C := (j, P ′) is the order pair for j ∈ Q and P ′ ⊆ P , where the
cost c(C) is calculated by directing all i ∈ P ′ to j, i.e., c(C) = f +

∑
i∈P ′ d(i, j).

Notation. We denote the set of all clusters C by C.

Remark (Just set cover!). We see that Problem 3.2.1 is equivalent to set cover on (P, C).

Proof. If we write down the LP for set cover on (P, C), we have

min
∑
C∈C

c(C) · yC max
∑
i∈P

αi∑
C∋i

yC ≥ 1 ∀i ∈ P
∑
i∈C

αi ≤ c(C) ∀C ∈ C

(P) y ≥ 0 (D) α ≥ 0,

which is equivalent to what we have as above. ⊛

But observe that the number of clusters is |Q| · 2|P |, hence directly solve either (P) or (D) is not
feasible. In this case, we can use the primal-dual method.

3.2.1 Primal-Dual Method
Let’s first see the primal-dual algorithm on (P) and (D) derived above.

CHAPTER 3. CLUSTERING 19

Lecture 5: Facility Location

Algorithm 3.1: Facility location – Primal-Dual
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, facility cost f
Result: A set of opened facilities Q′ ⊆ Q

1 S ← ∅, Q′ ← ∅, α← 0 // S:connected clients, O:open facilities
2

3 while S ̸= P do
4 while True do
5 increase all {αi}i∈P\S by a unit
6 if some j ∈ Q \Q′ s.t.

∑
i∈P βij = f then // j gets tight (open)

7 break
8 else if some i ∈ P \ S s.t. αi ≥ d(i, j) then // i can connect to j ∈ Q′

9 break

10 Q′ ← {tight facilities} // Update Q′

11 S ← {clients connected to Q′} // Update S

12

13 // Trim down Q′

14 G = (Q′, E := {(j, j′) : ∃i ∈ P such that αi > d(i, j), αi > d(i, j′), j, j′ ∈ Q′})
15 Compute Q′′ s.t. ∀j ∈ Q′, either j ∈ Q′′ or ∃j′ ∈ Q′′ s.t. (j, j′) ∈ E // max independent set
16 return Q′′

Note. line 6 and line 8 can happen in the same time.

Intuition. We’re basically increasing the cost i willing to pay and stop (in the second while loop)
when i finally connect to j. Or one can also interpret αi as the time i connects to some facilities j.

This directly relates to the fact that for all i, j, if i, j are connected, then d(i, j) ≤ αi, which is exactly
the spirit of the primal-dual method since we want to argue the upper-bound in terms of α. But before
that, we need to argue that α is actually feasible in order to make this bound valid.

Lemma 3.2.1. α is dual-feasible in Algorithm 3.1.

Proof. Firstly, α start from 0 which is feasible. Now, for αi violates the constraints
∑

i∈C α ≤
c(C) = f +

∑
i∈P ′ d(i, j), there are two possibilities, but both are handled in Algorithm 3.1. Specif-

ically, line 6 and line 8:

• In line 6: This corresponds to some j gets opened, we then need to make sure that no αi will
pay toward j for its open cost f . But this is clear since whoever i is paying non-zero amounts
to j for its f , i immediately connect to j and will be clicked out from P \ S, meaning that
their dual αi will not be increased anymore.

• In line 8: This corresponds to when i want to connect (willing to pay non-zero amount to)
an already opened j. But we see that whenever i willing to pay for an already opened j, we
immediately connect them and so j gets nothing (hence will not be violated) while i just pays
for the distance to go to j.

In all, throughout Algorithm 3.1, α is feasible. ■

Note (Trim down). Just like Algorithm 2.6, after getting the initial solution Q′, we’ll soon see in
the analysis section that it’s kind of wasteful, so we trim it down to obtain a better solution.

3.2.2 Analysis
We first do a naive analysis, i.e., try to bound the connected cost and opening cost for Q′ obtained in
Algorithm 3.1 before line 12, which turns out to be not working. The problem is not on connected cost,
since as noted above, d(i, j) ≤ αi so the connection cost is at most

∑
i αi.

CHAPTER 3. CLUSTERING 20

Lecture 5: Facility Location

Remark. Bound the opening cost naively can’t guarantee a constant approximation factor.

Proof. To bound opening cost, we see that

opening cost = f |Q′| =
∑
j∈Q′

f =
∑
j

∑
i

βij =
∑
i

∑
j∈Q′

βij .

Observe that since βij = max(0, αi−d(i, j)) ≤ αi, hence if we can guarantee for each i, it only pays
for one j, then we will get a 2-approximation. But this might not be the case since we don’t have
control of how many j that i is paying. ⊛

Let’s first introduce some notions in order to analyze Algorithm 3.1.

Notation (Connecting witness). The first open facility connected to i is called the connecting witness
w(i) ∈ Q for every i ∈ P .

Notation (Contributing). We say (i, j) is contributing if αi > d(i, j), i.e., βij > 0.a

aWe now have a strict inequality, i.e., i is now paying some non-trivial amount to j.

Note that the problem in the naive solution happens when a client i pays multiple facilities j. And
a simple idea is to close some facilities j such that every client pay at most 1 facility.

Intuition. If i is contributes to two facilities j and j′, we close down one of them basically since
this is where the problem comes from. This is exactly how we trim down Q′: by considering
G = (Q′, E) such that (j, j′) ∈ E if and only if ∃i ∈ P that contributes to both j and j′, taking
maximal independent set of G exactly makes i paying to only one j.

Note. In this case, we take care of opening cost, but the connected cost might be worse, so we
basically turn to bound another quantity while still keep one term simple to bound.

Notation (Directed connected). We say i ∈ P is directed connected if j ∈ Q′′ such that (i, j) is
connected (αi ≥ d(i, j)). For these i, divide αi into αf

i := βij and αc
i := d(i, j), i.e., αi = αf

i + αc
i .

Notation (Indirected connected). We say i is indirectly connected if i is not directed connected,a and
like in directed connected, αi =: α

f
i + αc

i where αf
i = 0, αc

i = αi.

ii′

j w(i)

Figure 3.1: When i is indirected connected.

ai.e., there exists j such that (j, w(i)) ∈ E, hence there exists i′ such that (i′, j) and (i′, w(i)) contributing.

Now, we can bound the opening cost f |Q′′| for Q′′ more carefully. It’s now

f |Q′′| =
∑
j∈Q′′

∑
i

βij =
∑
j∈Q′′

∑
d.c. i

βij =
∑
d.c. i

∑
j∈Q′′

βij

 =
∑
d.c. i

αf
i .

As for connected cost, we see that if i is directed connected, d(i, j) ≤ αc
i , while if i is indirected

connected, it’s not so clear. However, we have the following.

Claim. If i is indirected connected, then d(i, j) ≤ 3αi.

CHAPTER 3. CLUSTERING 21

Lecture 6: Facility Location with LMP Approximation

Proof. Note that (j, w(i)) ∈ E and d(i, j) ≤ αi + 2αi′ by looking at Figure 3.1, hence it’s sufficient
to prove αi′ ≤ αi. To do this, for some facility ℓ, define tℓ to be the time ℓ open in line 6, and αi

be the time i connected in line 8. We see that

• If (i, ℓ) are contributing, then αi ≤ tℓ.

• If ℓ = w(i), then tℓ ≤ αi.

Combining these together, we have αi′ ≤ tw(i) ≤ αi. ⊛

Finally, we have the following.

Theorem 3.2.1. Algorithm 3.1 is a 3-approximation algorithm.

Proof. The cost of Q′′ produce by Algorithm 3.1 is just the connected cost of plus the opening cost
of Q′′, which can be bounded as

final cost = connected cost + opening cost ≤
∑
i

3αc
i +

∑
i

αf
i ≤ 3

∑
i

αi ≤ 3OPT,

which shows that it is a 3-approximation algorithm. ■

Note. Notice that in the above proof, since we know that the opening cost is exactly
∑

i α
f
i , and

hence even if we pay 3 times of the opening cost, we still get a 3-approximation algorithm.

Remark. Algorithm 3.1 is a very basic algorithm which can be used even as a black-box for other
clustering problems. We’ll revisit this later and consider other metrics and see what can we improve.

Lecture 6: Facility Location with LMP Approximation
19 Sep. 10:303.2.3 Hardness

For Problem 3.2.1, we have the following.

(a) 1.488-approximation [Li13]

(b) 1.463-approximation is NP-hard [GK99]

Turns out that specifically for Problem 3.2.1, we can have a more refine notion of approximation ratio
defined below.

Definition 3.2.2 (LMP approximation). An algorithm ALG which solves facility location is called
γ-Lagrangian multiplier preserving approximation (LMP-approximation) if

conn(ALG)

γ
+ open(ALG) ≤

∑
i

αi

for some γ > 0.a

aThe opening cost is just k′f if ALG opens k′ centers.

Remark. The notion of LMP approximation is due to Lagrangian multiplier in the field of optimiza-
tion, where the dual variables are treated as a Lagrangian multipliers. And Definition 3.2.2 says
that we’re not approximating k′f at all, hence it’s preserving.

And indeed, we now have a more refined characterization about Algorithm 3.1.

CHAPTER 3. CLUSTERING 22

Lecture 6: Facility Location with LMP Approximation

Corollary 3.2.1. Algorithm 3.1 is a 3-LMP approximation algorithm.

Remark (SOTA). If we look at the SOTA result in terms of LMP, we have the following.

(a) 3-LMP approximation [JV01]

(b) 2-LMP approximation [JMS02]

(c) 1.99 . . . 9-LMP approximation [Coh+22]

(d) 1.73-LMP approximationa is NP-hard [JMS02]
aThe number comes from 1 + 2/e.

3.2.4 Greedy Method
Let’s take another look at Problem 3.2.1 and see it as an instance of Problem 2.1.1 where the universe is
all the clients P , while the collection of sets are pairs of facility and its connected clients, i.e., clusters.
Then, it’s natural to consider using a similar algorithm as Algorithm 2.1 to solve this.
Algorithm 3.2: Facility location – Greedy
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, facility cost fa

Result: A set of opened facilities Q′ ⊆ Q
1 S ← ∅, Q′ ← ∅
2 while S ̸= P do
3 choose (j, T) ∈ Q× P(P \X) with minimum c((j, T))/ |T |
4 Q′ ← Q′ ∪ {j}
5 S ← S ∪ T
6 return Q′

aWe didn’t use it explicitly in the algorithm since we hide it in the cost function c(·).
This is just Algorithm 2.1, hence we have Hn-approximation. But as we have seen in Theorem 3.2.1,

we have achieved a constant approximation ratio for Problem 3.2.1. Hence, we should be able to do
better based on Algorithm 3.2.

Remark. If we modify Algorithm 3.2 such that for all (j, T), if j is open, then we define the cost of
this cluster as

c((j, T)) :=

∑
i∈T d(i, j)

|T |
.

We’ll achieve 1.861-approximation, but the analysis is complex.

Instead, we’re going to see other variations based on Algorithm 3.2.

First Modification

We see observe that c((j, T))/ |T | is increasing in Algorithm 3.2. proof!Also, if α := c((j, T))/ |T |, then for
all i ∈ T , d(i, j) ≤ α where we interpret this as i pays αi to cover the connection cost d(i, j) and the
opening cost αi − d(i, j) of j. Following this intuition, if we change line 6 in Algorithm 3.1 (with only
first phase) such that the summation is over P \ S, it becomes exactly Algorithm 3.2.

CHAPTER 3. CLUSTERING 23

Lecture 6: Facility Location with LMP Approximation

Algorithm 3.3: Facility location – Greedy Modification I
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, facility cost f
Result: A set of opened facilities Q′ ⊆ Q

1 S ← ∅, Q′ ← ∅, α← 0 // S:connected clients, Q′:open facilities
2

3 while S ̸= P do
4 while True do
5 increase all {αi}i∈P\S by a unit
6 if some j ∈ Q \Q′ s.t.

∑
i∈P\S βij = f then // j gets tight (open)

7 break
8 else if some i ∈ P \ S s.t. αi ≥ d(i, j) then // i can connect to j ∈ Q′

9 break

10 Q′ ← Q′ ∪ {j} // Update Q′

11 S ← S ∪ {i ∈ P \ S : αi ≥ d(i, j)} // Update S

12 return Q′

Remark. Since line 6 and line 8 can happen simultaneously, while what we just said assumes the
opposite, so we need to further modify Algorithm 3.1 in line 10 and line 11.

Second Modification

Another potential modification gives us a 1.61-approximation. We essentially allow i ∈ S to switch in
Algorithm 3.3, i.e., after i connects to j, if j′ is closer to i later, i can offer with d(i, j)− d(i, j′) to other
facilities.
Algorithm 3.4: Facility location – Greedy Modification II
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, facility cost f
Result: A set of opened facilities Q′ ⊆ Q

1 S ← ∅, Q′ ← ∅, α← 0 // S:connected clients, Q′:open facilities
2

3 while S ̸= P do
4 while True do
5 increase all {αi}i∈P\S by a unit
6 if some j ∈ Q \Q′ s.t.

∑
i∈S(d(i, w(i))− d(i, j))+ +

∑
i∈P\S βij = fa then

7 break

8 if some i ∈ P \ S s.t. αi ≥ d(i, j) then // i can connect to j ∈ Q′

9 break

10 Q′ ← Q′ ∪ {j} // Update Q′

11 S ← S ∪ {i ∈ P \ S : αi ≥ d(i, j)} // Update S

12 return Q′

aWe define a+ := max(a, 0) and also, w(i) is now the current facility i is connected to.

Third Modification

If we run Algorithm 3.4 with facility cost being f̂ := 2f , we can have a 2-LMP approximation algorithm
as follows.

CHAPTER 3. CLUSTERING 24

Lecture 6: Facility Location with LMP Approximation

Algorithm 3.5: Facility location – Greedy Modification III
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, facility cost f
Result: A set of opened facilities Q′ ⊆ Q

1 S ← ∅, Q′ ← ∅, α← 0 // S:connected clients, Q′:open facilities
2

3 while S ̸= P do
4 while True do
5 increase all {αi}i∈P\S by a unit
6 if some j ∈ Q \Q′ s.t.

∑
i∈S(d(i, w(i))− d(i, j))+ +

∑
i∈P\S βij = f̂a then

7 break

8 if some i ∈ P \ S s.t. αi ≥ d(i, j) then // i can connect to j ∈ Q′

9 break

10 Q′ ← Q′ ∪ {j} // Update Q′

11 S ← S ∪ {i ∈ P \ S : αi ≥ d(i, j)} // Update S

12 return Q′

aWe define a+ := max(a, 0) and also, w(i) is now the current facility i is connected to.
It’s clear that in Algorithm 3.5, the connection cost plus 2 times the opening cost is

∑
i∈P αi from

how we design the algorithm by changing the facility cost from f to f̂ := 2f . Now, a crucial lemma is
the following.

Lemma 3.2.2. (α′, β′) is dual feasible, where α′ := α/2, β′
ij := (α′

i − d(i, j))+.

Proof. It’s sufficient to consider j ∈ Q and prove that
∑

i∈P ′ β′
ij ≤ f where P ′ :=

{
i : β′

ij > 0
}
= [n]

where we’re overloading n here. Let’s order αi such that α1 ≤ · · · ≤ αn where αi is the time i when
i is first connected.

Claim. For all i, k ∈ P ′ such that αk ≤ αi, at time (right before) αi, offer from k to ja is at
most αi − d(i, j)− 2d(k, j) for any j ∈ Q.

aWe assume k currently (or is going to) connects to j′.

Proof. We see that if αi = αk, the offer is just (αk − d(i, j))+. Otherwise, we have αk < αi. If
αi > d(k, j′)+d(k, j)+d(i, j), we immediately get a contradiction since from triangle inequality,
αi > d(i, j′), i.e., i already connect to j′. Hence,

αi ≤ d(k, j′) + d(k, j) + d(i, j).

Then, the offer from k to j is (d(k, j′)− d(k, j))+ ≥ αi − d(i, j)− 2d(k, j). ⊛

Observe that for all i ∈ [n], we have

i−1∑
k=1

(αi − d(i, j)− 2d(k, j)) +

n∑
k=i

(αi − d(k, j)) ≤ f̂ (3.1)

by considering the total offer from k to j at time (right before) αi. Now, we add Equation 3.1 for
all i ∈ [n], we have

n

n∑
i=1

αi −
n∑

i=1

(i− 1)d(i, j)− 2

n∑
k=1

(n− k)d(k, j)−
n∑

i=1

k · d(k, j) ≤ nf̂ = 2nf.

CHAPTER 3. CLUSTERING 25

Lecture 7: k-Median and LMP Approximation

Since the summation over k is just indexes, we can change it to i, hence

2nf ≥ n
n∑

i=1

αi −
n∑

i=1

(i− 1)d(i, j)− 2

n∑
i=1

(n− i)d(i, j)−
n∑

i=1

i · d(i, j)

≥ n
n∑

i=1

αi −
n∑

i=1

id(i, j)− 2

n∑
i=1

(n− i)d(i, j)−
n∑

i=1

i · d(i, j) = n

n∑
i=1

αi −
n∑

i=1

2nd(i, j)

where we turn the factor (i− 1) into i and gather the terms together. Clean up a bit, we have

n

n∑
i=1

αi − 2n

n∑
i=1

d(i, j) ≤ 2nf ⇔
∑n

i=1 αi

2
−

n∑
i=1

d(i, j) ≤ f,

finishing the proof. ■
From Lemma 3.2.2, we immediately have the following.

Theorem 3.2.2. Algorithm 3.5 is a 2-LMP approximation algorithm w.r.t. the original f .

Lecture 7: k-Median and LMP Approximation
21 Sep. 10:303.3 k-Median

Let’s look at another clustering problem.

Problem 3.3.1 (k-median). Given a metric space (X, d) and P,Q ⊆ X with k ∈ N, find Q′ ⊆ Q
with |Q′| = k which minimizes

∑
i∈P minj∈Q′ d(i, j).

The natural linear programming for Problem 3.3.1 is the following. Consider {xij}i∈P,j∈Q and
{yj}j∈Q, then

min
∑
ij

xijd(i, j)∑
j

xij ≥ 1 ∀i ∈ P (αi)

xij ≤ yj ∀i ∈ P, j ∈ Q (βij)∑
j

yj ≤ k (f)1

x, y ≥ 0

Intuition. We interpret xij as follows: if xij = 1, then i belongs to j. And yj = 1 if j is the actual
median we choose (i.e., in Q′). As for constraints, both

∑
j xij ≥ 1 and

∑
j yj ≤ k are clear, while

for xij ≤ yj , we see that it can’t be the case that xij = 1 while yj = 0, i.e., we can’t have the case
that xij belongs to j while j isn’t even in Q′.

The dual is then
max

∑
i

αi − kf∑
i

βij ≤ d(i, j) ∀i ∈ P, j ∈ Q∑
i

βij ≤ f ∀j ∈ Q

α, β ≥ 0

1Notice that compare to Problem 3.2.1, f here is a variable but not a given facility cost! The reason why we do this
will be clear soon.

CHAPTER 3. CLUSTERING 26

Lecture 7: k-Median and LMP Approximation

Note. Notice that this is exactly the dual as Problem 3.2.1, except that we now have an additional
−kf term in the objective function. Although f is not included in the statement of Problem 3.3.1,
by denoting one of the dual variable f , we get a similar formulation compare to Problem 3.2.1.

Due to the similarity between Problem 3.3.1 and Problem 3.2.1, we can try to use Algorithm 3.5
which solves Problem 3.2.1 with 2-LMP guarantee. But note that in Problem 3.2.1, we need to specify
f . Suppose we guessed f , and we run a γ-LMP approximation algorithm and somehow get k′ = k. Then
we have

conn(ALG)

γ
≤
∑
i

αi − kf ≤ OPTk-med.,

i.e., this is a γ-approximation algorithm. So now, the task is to guess f such that the algorithm gives
exactly k centers.

3.3.1 Bipoint Solution
Turns out that we don’t have ideas about the relation between k and f , the only thing we know is that
if f →∞, k decreases, other than that it behaves quite arbitrary.

Remark. The relation between k and f indeed highly depends on what algorithm we use. But at
least for Algorithm 3.5, nobody knows anything in this case.

Given this fact, just randomly guess one f doesn’t work. A new idea is then to maintain two solutions
(or interval) [f2, f1] such that f2 ≤ f1,2 where

• at f2, the algorithm opens k2 ≥ k facilities;

• at f1, the algorithm opens k1 ≤ k facilities.

Then, a naive approach is to use binary search and get f2 ≤ f1 such that∣∣f1 − f2∣∣ ≤ ϵOPT
n

.

Notice that the whole point of doing binary search is because we assume that if k2 ≥ k at f2 and k1 ≤ k
at f1, then we can find an f∗ ∈ [f2, f1] such that we get exactly k∗ = k at f∗.

Remark (Caveat of achieving k). This is probably not the case for Algorithm 3.2 (2-LMP) since the
decision is quite sequential; but if we use Algorithm 3.1 (2-LMP), since there are lots of maximal
independent sets, so by doing a lot more work, we can actually achieve this.

Now, assume that we have continuity of the relation between k and f by carefully designing our
(γ-LMP) algorithm, then ∃a ∈ [0, 1] and b := 1− a such that k := ak1 + bk2 where k1 ≤ k ≤ k2. Denote
Ci as the connection cost conn(f i) of f i such that C1 ≥ C2, we have

C1 + γk1f1 ≤ γ
∑
i

α1
i , (×a)

C2 + γkr2f2 ≤ γ
∑
i

α2
i , (×b)

hence,

aC1 + bC2 ≤ γ

(
a
∑
i

α1
i + b

∑
i

α2
i − ak1f1 − bk2f2

)
≤ γ

(∑
i

αi − kf

)
︸ ︷︷ ︸

≤OPTk-med.

+ γk
∣∣f1 − f2∣∣︸ ︷︷ ︸

≤ϵOPTk-med.

,

where we set α := aα1 + bα2 and f := max(f1, f2).

2We start from f2 = 0 and f1 = ∞, where we set f1 arbitrary large.

CHAPTER 3. CLUSTERING 27

Lecture 7: k-Median and LMP Approximation

Note. To make sure
∑

i αi − kf ≤ OPTk-med., we need to check that (α, f) is dual-feasible for
Problem 3.3.1.

Proof. The feasibility comes from the fact that the first two constraints of Problem 3.3.1 are linear,
so they’re automatically satisfied. The only non-trivial constraint is

∑
i βij ≤ f , but since we choose

f to be the maximum, it’ll be more satisfied. ⊛

Definition 3.3.1 (Bipoint solution). Given F 1, F 2 with
∣∣F 1
∣∣ = k1,

∣∣F 2
∣∣ = k2 and k = ak1 + bk2 for

a, b ∈ [0, 1] and a+ b = 1, the bipoint solution, denoted as aF 1 + bF 2, satisfies

aC1 + bC2 ≤ γ · OPTk-med. .

3.3.2 Bipoint Rounding
From Definition 3.3.1, it’s natural to do the so-called bipoint rounding.

Definition 3.3.2 (δ-bipoint rounding). Given solutions F 1 and F 2, a solution F with |F | = k such
that

conn(F) ≤ δ · (aC1 + bC2) = δ · conn(aF 1 + bF 2)

is the so-called δ-bipoint rounding solution.

Note. If we have a δ-bipoint rounding of a γ-LMP algorithm solution, then we automatically have
an approximation ratio of δ · γ for this bipoint rounding solution.

Back to Problem 3.3.1, we see that we can actually get a 2-bipoint rounding as follows. Consider
we create a bipartite graph with Q1, Q2 ⊆ Q being two sides of the graph. Then for each i ∈ P , i is
connected to the closest facility in Q1, and also another closest facility in Q2, so we can create an edge
between these two facilities.

Q1 Q2

i ∈ Pclient i

Now, for a fixed i ∈ P , let dj := d(i, Qj) for j = 1, 2, we want to compare our designed final cost to
aC1 + bC2, so for this fixed i, we want to make sure i pays not much more than ad1 + bd2.

Intuition. We see that a natural rounding algorithm is the following: for an i ∈ P , if its closest
facility in Q1 is opened while its closest facility in Q2 is not opened, we may just direct i to the
opened one in Q1, same for the other case. Now, if both facilities are opened, then we direct i to
the facility in F 1 with probability a, while to the facility in Q2 with probability 1− a = b.

Remark. The problem of the above algorithm is that we don’t have control about the total number
of the final open facilities: it can be the case that at the end we open every facility in Q2, which is
k2, not k. So we need to sometimes direct i to other facilities (in Q1) that is not closest to which.

For j ∈ Q1, let π(j) be the closest facility in Q2 to j, and let Q∗ be the image of such a map π, i.e.,
Q∗ =

{
j′ ∈ Q2 : j′ = π(j) for some j ∈ Q1

}
.

Note. We may assume |Q∗| = k1.

CHAPTER 3. CLUSTERING 28

Lecture 7: k-Median and LMP Approximation

Proof. Clearly, |Q∗| ≤ k1. And if |Q∗| < k1, we add arbitrary centers so that |Q∗| = k1.

Q1 Q2

i ∈ P

j π(j)

client i
π(·)

For example, the initial image size above is only 4, we need to add 2 more arbitrary centers into
Q∗. ⊛

To open the facilities as what we want, consider the following rounding algorithm.
Algorithm 3.6: k-Median – 2-Bipoint Rounding
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, a ∈ (0, 1), ϵ ∈ (0, 1), k ∈ N
Result: A set of opened facilities Q′ ⊆ Q with |Q′| = k

1 (Q1, Q2)←binary-search(P , Q, ϵ) // achieve
∣∣f1 − f2∣∣ ≤ ϵOPT /n

2

3 Q′ ← ∅, k1 ←
∣∣Q1
∣∣, k2 ← ∣∣Q2

∣∣, Q∗ ←
{
j′ ∈ Q2 : j′ = π(j) for some j ∈ Q1

}
4

5 for j ∈ Q1 do
6 if rand(0, 1)≤ a then // open Q1 w.p. a
7 Q′ ← Q′ ∪ {j}
8 else // open Q∗ w.p. 1− a
9 Q′ ← Q′ ∪ {π(j)}

10

11 // still need to open k − k1 more
12 Q′ ← Q′ ∪

{
(k − k1) random j ∈ Q2 \Q∗ }

13 return Q′

Remark. Algorithm 3.6 is a randomized algorithm which will always open k facilities. The ran-
domness comes from the cost, i.e., we can analyze its cost in expectation.

Intuition. Algorithm 3.6 is kind of mimicking what we want, since

• j ∈ Q1, Pr(j open) = a

• j ∈ Q∗, Pr(j open) = 1− a = b

• j ∈ Q2 \Q∗, Pr(j open) = k−k1

k2−k1 = b

Theorem 3.3.1. Algorithm 3.6 is a 2-bipoint algorithm (in expectation).

Proof. Let’s analyze a bit careful. Fixing an i ∈ P , and denote its closest facility in Q1 as j1, and
the closest facility in Q2 as j2. If j1 is not opened, then we know π(j1) is opened for sure in line 8.
We see that

• If j2 is in Q∗, then we know i will be direct to either j1 or j2 in line 5, i.e., i is perfectly happy
since it can go to one of the closest facility.

• The tricky case is when j2 is not in Q∗.

– If j1 is opened, i can still go to j1 without problem.

– If j1 is also not opened, we know that π(j1) will be opened in line 8. In this worst case,

CHAPTER 3. CLUSTERING 29

Lecture 8: Local Search for k-Median

we just direct i to π(j1) and the distance will be i → j1 → π(j1), which is bounded by
d1 + d(j1, π(j1)). But observe that d(j1, π(j1)) ≤ d1 + d2, so we have 2d1 + d2.

Q1 Q2

j π(j) randomly opened (Q2 \Q∗)

perfectly happy
tricky case

client i
π(·)

In all, we have the following.a

Distance Probability

j2 open d2 b
j2 not open, j1 open d1 ≥ (a− b)+ =:M
none of j1, j2 open 2d1 + d2 ≤ 1− b−M

Then, the expected cost is justb

E [i’s connection cost] ≤ bd2 +Md1 + (1− b−M)(2d1 + d2),

and we now have two cases.

• If b ≥ a, then b ≥ 1/2, M = 0 and

E [i’s connected cost] ≤ b · d2 + (1− b)(2d1 + d2) = 2ad1 + d2 ≤ 2(ad1 + bd2).

• If a > b, then a > 1/2, M = a− b and

E [i’s connected cost] ≤ b · d2 + (a− b)d1 + b(2d1 + d2) = d1(a+ b) + d2(b+ b) ≤ 2(ad1 + bd2).

This shows Algorithm 3.6 is a 2-bipoint algorithm in expectation, proving the result. ■

aThis is a slightly worse result since we force i to go to j2 if j2 is opened, but actually, i can go to j1 if j1 is
opened too with shorter distance. But this still gives us a good enough bound.

bSince the final case is always worse than the second case, it is legal to assume that the second case has the
minimum probability and the final has the maximum for the expectation bound to hold.

Remark (SOTA). The SOTA result specifically for Problem 3.3.1 is summarized as follows.

Primal-Dual 3-LMP 3-approximation

Greedy 2-LMP 2-bipoint rounding 4-approximation

Dual Fitting [Coh+22] 1.9 . . . 9-LMP 1.3 . . . 3-bipoint roundinga 2.67-approximation

Conversion

But we’ll see that by changing the problem a bit, like consider squaring the distance in the
objective of Problem 3.3.1 (which is the k-mean problem), we can get 9-approximation by Primal-
Dual, while the lower path doesn’t tell us anything, which is so fragile.

aThis will return k + c centers, where c is an absolute constant. There’s a way to transform this solution back to
k centers without loosing any performance.

Note (Derandomized). It’s possible to derandomized Algorithm 3.6.

CHAPTER 3. CLUSTERING 30

Lecture 8: Local Search for k-Median

Lecture 8: Local Search for k-Median
26 Sep. 10:30We’ll now see a completely different algorithm which solve Problem 3.3.1 with (3 + ϵ)-approximation

ratio by local search.

3.3.3 Local Search
The idea is to iteratively improve the current solution. We first see the algorithm.
Algorithm 3.7: k-Median – Local Search
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, k ∈ N, width w
Result: A set of opened facilities Q′ ⊆ Q with |Q′| = k

1 Q′ ← arbitrary k centers in Q
2 while ∃Q′′ s.t. |Q′′| = k and cost(Q′′) < cost(Q′) and |Q′△Q′′| ≤ wa do
3 Q′ ← Q′′

4 return Q′

aThe symmetric difference A△B is defined as A△B := (A \B) ∪ (B \A).

Remark (Runtime). In line 2, each iteration in Algorithm 3.7 takes (n +m)O(w) time for n := |P |
and m := |Q|. But we have no control of how many iterations Algorithm 3.7 might take since we
might decrease the cost by a little each time hence we might fall into exponentially many updates.
To solve this, we can ask for

cost(Q′′) < (1− ϵ) cost(Q′)

instead to make sure we decrease a reasonable amount each time, which guarantees that we can
bound the number of iterations by

log 1
1−ϵ

(
cost(starting Q′)

OPT

)
.

To do the analysis, first note that for any solution Q′ output from Algorithm 3.7, we have that there
exists no Q′′ such that |Q′△Q′′| ≤ w, |Q′′| = k and cost(Q′′) < cost(Q′).

Note (Local optimum). We say this Q′ is a local optimum.

Let Q∗ ⊆ Q be the optimal solution, and without loss of generality (by duplicating facilities), assume
Q′ ∩Q∗ = ∅. We define something called swap.

Notation (Swap). A swap S ⊆ Q′ ∪Q∗ satisfies |S ∩Q′| = |S ∩Q∗| ≤ w/2.

Note. From local optimality of Q′, for any swap S, cost(Q′) ≤ cost(Q′△S).

Now, consider constructing swaps S1, . . . , St with weights p1, . . . , pt ∈ R+ such that cost(Q′) ≤
cost(Q′△Si) for all i, we have

t∑
i=1

pi · (cost(Q′)− cost(Q′△Si)) ≤ 0. (3.2)

Our goal is to show that Equation 3.2 implies cost(Q′) ≤ α · cost(Q∗) for some α ∈ R+. To do this, we
require the set of swaps to have the following properties.

(a) For all j ∈ Q∗,
∑

Si∋j pi = 1, and let p′ := maxj∈Q′
∑

Si∋j pi.

(b) For all j ∈ Q∗, let π(j) ∈ Q′ be the facility closest to j. Then if Si contains j ∈ Q′, π−1(j) ⊆ Si.3

The existence of such swaps family is ensured by the following lemma.
3In particular, if

∣∣π−1(j)
∣∣ > w/2, then j is not contained in any swap.

CHAPTER 3. CLUSTERING 31

Lecture 8: Local Search for k-Median

Lemma 3.3.1. There exists a family of swaps S1, . . . , St with weights p1, . . . , pt such that ∀j ∈ Q∗,∑
Si∋j pi = 1 and if j ∈ Si, π−1(j) ⊆ Si with p′ = maxj∈Q′

∑
Si∋j pi = 1 + 2/w.

Proof. For all j ∈ Q′, we call j

• big : if
∣∣π−1(j)

∣∣ > w/2.

• small : if
∣∣π−1(j)

∣∣ ∈ [1, w/2].

• lonely : if
∣∣π−1(j)

∣∣ = 0.

Then for each small or big j, we create a group Gj that contains π−1(j), j and
∣∣π−1(j)

∣∣− 1 lonely
facilities (denote as Rj ⊆ Q′). We see that |Gj | = 2

∣∣π−1(j)
∣∣, and we can ensure each lonely facility

belongs to exactly 1 group, i.e., ∃G1, . . . Gr such that each facility belongs to exactly 1 group. It’s
now clear that how we should create swaps and their corresponding weight:

(a) For small j, let Gj be a swap with weight 1.

(b) For big j, let w′ :=
∣∣π−1(j)

∣∣, then for any S ⊆ π−1(j) and T ⊆ Rj with |S| = |T | = w/2, we

let (S ∪ T) be a swap with weight 1/
((

w′−1
w/2−1

)
·
(
w′−1
w/2

))
.a

Since for every j∗ ∈ Q∗, there is only one group containing j∗, to verify
∑

Si∋j∗ pi = 1, we see that

(a) j∗ is containing in Gj for j small: In this case, we have one swap, i.e., Gj itself with weight 1.

(b) j∗ is containing in Gj for j big: In this case, since every such swap created inside Gj contains
j∗ and has uniform weight, it sums up to 1.

Finally, we want to show that p′ = maxj∈Q′
∑

Si∋j pi = 1 + 2/w. But this is also easy since
given j ∈ Q′, the summation is inside Gj , and in particular, Si is inside Gj as well. Then

(a) j is small: Only swap is Gj itself with weight 1.

(b) j is big: j can’t even be in one swap, hence the sum is 0.

(c) j is lonely: In this case, we have∑
Si∋j

pi =
1(

w′−1
w/2−1

)(
w′−1
w/2

) · (w′

w/2

)(
w′ − 2

w/2− 1

)
=

w′

w/2

w/2

w′ − 1
=

w′

w′ − 1
≤ 1 +

2

w
.

Taking the maximum, we have p′ = 1 + 2/w as desired. ■

aNotice that since j is big, so j can’t be in any swap, so we have only w′ − 1 to choose from.

With Lemma 3.3.1, we’re ready to prove the following.

Theorem 3.3.2. Algorithm 3.7 is a (3 + ϵ)-approximation algorithm for arbitrary small ϵ > 0.

Proof. Fix i ∈ P , we analyze how it contributes to the left-hand side of Equation 3.2. Let j′ ∈ Q′

and j∗ ∈ Q∗ be facilities closest to i, and d′i := d(i, j′), d∗i = d(i, j∗), then for every Sℓ, we have

(a) Sℓ ∋ j∗. Then contribution of i to cost(Q′)− cost(Sℓ△Q′) is at least d′i − d∗i .a

(b) Sℓ ∋ j′. By the second property, either

• π(j∗) ∈ Sℓ: this implies j∗ ∈ Sℓ, which falls back to the first case.

• π(j∗) /∈ Sℓ: the contribution of i to cost(Q′)− cost(Sℓ△Q′) is at least d′i − (2d∗i + d′i) =
−2d∗i .b

(c) Otherwise, contribution of i to cost(Q′)− cost(Sℓ△Q′) is at least 0.c

In all, we see that the first case has total weight 1 from the first property, while (b)−(a) has

CHAPTER 3. CLUSTERING 32

Lecture 9: Euclidean k-Median

total weight ≤ p′, hence Equation 3.2 implies

∑
i∈P

[(d′i − d∗i) · 1− (2d∗i) · p′] ≤
t∑

ℓ=1

pℓ(cost(Q
′)− cost(Sℓ△Q′)) ≤ 0,

which is equivalent to say
cost(Q′)− (1 + 2p′)OPT ≤ 0,

so we get a (1 + 2p′)-approximation ratio. Furthermore, From Lemma 3.3.1, we have p′ = 1+ 2/w,
hence we can achieve 1 + 2(1 + 2/w) = 3 + 4/w-approximation ratio. Given ϵ > 0, by setting
w := 4/ϵ, we’re done. ■

ai can go to j∗.
bi can go to π(j∗).
ci can stay with j′.

Lecture 9: Euclidean k-Median
28 Sep. 10:303.4 Euclidean k-Median

If we now consider the metric space to be exactly (Rℓ, ∥·∥2), we get some advantages from the structure
of Euclidean metric.

Intuition. The problematic part is the old approach for k-median problem is when i contributing
to too many facilities at once. But we’ll see that this can’t happen if we’re considering Euclidean
metric, which has some inherent geometric limitation in terms of volume.

Now, let’s see the problem formulation.

Problem 3.4.1 (Euclidean k-median). Given a metric space (X, d) = (Rℓ, ∥·∥2) and P,Q ⊆ X with
k ∈ N, find Q′ ⊆ Q with |Q′| = k which minimizes

∑
i∈P minj∈Q′ d(i, j).

It’s natural to ask that whether we can solve Euclidean k-median like how we solve facility location
and k-median. The answer is yes, and in particular, we’re going to modify Algorithm 3.1 for facility
location to get an α-LMP approximation with α < 3, which essentially implies an α-approximation
algorithm for k-median using Euclidean metric.

3.4.1 Euclidean Facility Location
Formally, we define the following problem.

Problem 3.4.2 (Euclidean facility location). Given a metric space (X, d) = (Rℓ, ∥·∥2) and P,Q ⊆ X,
f ∈ R+ where P is the set of clients, Q is the set of (possible) facilities, we want to open Q′ ⊆ Q
such that it minimizes

∑
i∈P minj∈Q′ d(i, j) + f |Q′|.

As previously seen. Recall the dual of facility location is

max
∑
i

αi

αi − βij ≤ d(i, j) ∀i, j∑
i

βij ≤ f ∀j

(D) α, β ≥ 0

and the Algorithm 3.1 uses primal-dual method, where we interpret αi is the time that i is connected.

Let tj be the time that j is open in Algorithm 3.1, and the only thing we change is the phase two, i.e.,
how we trim down the solution. We now see the algorithm, which essentially achieves ρ := (1 + δ)-LMP

CHAPTER 3. CLUSTERING 33

Lecture 9: Euclidean k-Median

approximation for δ :=
√
8/3 ≈ 1.633

Algorithm 3.8: Euclidean Facility Location – Primal-Dual
Data: A set of clients P ⊆ X, a set of (possible) facilities Q ⊆ X, facility cost f
Result: A set of opened facilities Q′ ⊆ Q

1 S ← ∅, Q′ ← ∅, α← 0 // S:connected clients, O:open facilities
2

3 while S ̸= P do
4 while True do
5 increase all {αi}i∈P\S by a unit if some j ∈ Q \Q′ s.t.

∑
i∈P βij = f then // j gets

tight (open)
6 break
7 else if some i ∈ P \ S s.t. αi ≥ d(i, j) then // i can connect to j ∈ Q′

8 break

9 Q′ ← {tight facilities} // Update Q′

10 S ← {clients connected to Q′} // Update S

11

12 // Trim down Q′

13 G = (Q′, E := {(j, j′) : ∃i ∈ P such that d(j, j′) ≤ δ ·min(tj , tj′), j, j
′ ∈ Q′})

14 Compute Q′′ s.t. ∀j ∈ Q′, either j ∈ Q′′ or ∃j′ ∈ Q′′ s.t. (j, j′) ∈ E // max independent set
15 return Q′′

To do the analysis, as before, let w(i) ∈ Q′ for all i such that α ≥ tw(i), i.e., w(i) is the connected
witness of i.

Remark. We have the following.

(a) α is dual-feasible.

(b) If βij > 0, then αi ≤ tj .

(c) For all i, ∃w(i) ∈ Q′ such that αi ≥ tw(i).

We can do the analysis similarly. Fix a client i ∈ P , then observe that given S = Q′′ ∩ {j : βij > 0},
if δ = 2, then |S| ≤ 1.4 We see that

(a) If |S| = 1, S = {j}. We see that conn(i) ≤ d(i, j) and open(i) = αi − d(i, j), so

conn(i) + open(i) ≤ d(i, j) + (αi − d(i, j)) ≤ αi.

(b) If |S| = 0, then open(i) = 0 and either w(i) ∈ Q′′, or j′ ∈ Q′′ such that (w(i), j′) ∈ E. In any case,
conn(i) ≤ d(i, j′) ≤ d(i, w(i)) + d(w(i), j′), hence

conn(i) + open(i) ≤ d(i, j′) ≤ αi + δtw(i) ≤ (1 + δ)αi.

Generally, our goal is to prove that for all i,

conn(i)

ρ
+ open(i) ≤ αi, (3.3)

which implies
conn

ρ
+ |Q′′| f ≤

∑
i

αi,

i.e., we get a ρ-LMP approximation algorithm.

4Since if both βj and βj′ is greater than 0, then d(j, j′) ≤ 2αi ≤ 2min(tj , tj′). This means j and j′ will have an edge
but from the property of max independent set, one of them will not be included.

CHAPTER 3. CLUSTERING 34

Lecture 9: Euclidean k-Median

Note. Specifically, Equation 3.3 is equivalent to

minj∈S d(i, j)

ρ
+
∑
j∈S

(αi − d(i, j)) ≤ αi.

In the case of δ = 2, we see that we can set ρ := 1 + δ = 3. We see that we get the exactly 3-LMP
approximation for δ = 2 case! Notice that in this case, since |S| ≤ 1 as we noted, Algorithm 3.8 and
Algorithm 3.1 are equivalent.

Now, we’ll see how can we get advantages by further restricting δ, which utilizes the following.

Remark (k-means magic formulas). There are two extremely useful tricks call k-means magic for-
mulas for Euclidean metric related problems. Let i′ =

∑
j∈S j/ |S|. Then∑

j∈S

∥j − i∥2 =
∑
j∈S

⟨j − i+ i′ − i′, j − i+ i′ − i′⟩

=
∑
j∈S

(
∥j − i∥2 + ∥i′ − i∥2 + 2 ⟨j − i′, i′ − i⟩

)
=
∑
j∈S

∥j − i′∥2 + |S| ∥i′ − i∥2 .

Also, ∑
j,j′∈S

∥j − j′∥2 =
∑

j,j′∈S

⟨j − j′ + i′ − i′, j − j′ + i′ − i′⟩

=
∑

j,j′∈S

(
∥j − i′∥2 + ∥j′ − i′∥2 + 2 ⟨j − i′, i′ − j′⟩

)
= 2 |S| ·

∑
j∈S

∥j − i′∥2 .

One can actually show that i′ (i.e., the geometric mean) is the optimal solution for k-means, and if
we choose i rather than i′ to be the center, the deviation from OPT is exactly |S| ∥i′ − i∥2. Nevertheless,
we have the following.

Lemma 3.4.1. For δ :=
√
8/3 and S = Q′′ ∩ {j : βij > 0}, |S| ≤ 3.

Proof. From the k-means magic formulas, we have

|S|α2
i ≥

∑
j∈S

∥j − i∥2 ≥ 1

2 |S|
∑

j,j′∈S

∥j − j′∥2 > (s− 1)δ2α2
i

2
,

where the last inequality follows from ∥j − j′∥ > δ ·min(tj , tj′) ≥ δ · αi. Then, we have

|S|α2
i >

(s− 1)δ2α2
i

2
⇒ |S|

(
δ2

2
− 1

)
<
δ2

2
⇒ |S| < δ2

δ2 − 2
= 4

by plugging in δ =
√
8/3, hence |S| ≤ 3 by integrality. ■

From Lemma 3.4.1, we see that we already handle the case that |S| = 0 and |S| = 1, so the only
cases left are |S| = 2 and |S| = 3. And by doing so, we obtain the following theorem.

Theorem 3.4.1. Algorithm 3.8 is a (1 +
√

8/3)-LMP approximation algorithm.

Proof. As said, from Lemma 3.4.1, we only need to consider the case that |S| = 2 and |S| = 3. If
|S| = 2, let S = {j1, j2}, then (αi − d(i, j1)) + (αi − d(i, j2)) ≤ (2− δ)αi. Since conn(i) ≤ αi,

d(i, j∗)

ρ
+
∑
j∈S

(αi − d(i, j)) ≤ αi

(
1

ρ
+ 2− δ

)
≤ αi, (3.4)

where the last inequality follows from 1/ρ + 2 − δ ≤ 1 ⇔ 1/ρ ≤ δ − 1, which is satisfied by
ρ := 1 + δ = 1 +

√
8/3.

CHAPTER 3. CLUSTERING 35

If |S| = 3, let S = {j1, j2, j3}. Now, instead of looking at a more complicated geometric structure
and try to optimize it, we simply add Equation 3.4 three times for (j1, j2), (j2, j3) and (j1, j3), we
have 2

∑
j∈S(αi − d(i, j)) ≤ 3(2− δ)αi hence

d(i, j∗)

ρ
+
∑
j∈S

(αi − d(i, j)) ≤ αi

(
1

ρ
+

3(2− δ)
2

)
≤ αi

since 1/ρ+ 3(2− δ)/2 ≤ 1⇔ 1/ρ ≤ (3δ − 4)/2, which is satisfied by ρ := 1 + δ = 1 +
√

8/3 ■

Remark (SOTA). Compare general metric Problem 3.3.1 and Euclidean metric Problem 3.4.1, we
have the following.

2.41-LMPa 2.41-approximation

Euclidean Primal-Dual 2.63-LMP 2.63-approximation

Primal-Dual 3-LMP 3-approximation

Dual Fitting [Coh+22] 1.9 . . . 9-LMP 1.3 . . . 3-bipoint rounding 2.67-approximation

Local Search 3-LMP 2-bipoint rounding 4-approximation

Conversion

Conversion

Conversion

Noticeably, 2.41-LMP approximation is 1+
√
2, which is exactly the threshold behavior in Euclidean

metric we’re building our intuition upon.
a2.40 is the SOTA.

Note. We assume that ℓ is large throughout. If it’s not the case, then actually for all ϵ > 0, there
exists a (1 + ϵ)-approximation algorithm with running time 22

O(ℓ) · poly(n). Hence, if ℓ is small (or
constant), we can use this algorithm, otherwise, what we have discussed is better.

CHAPTER 3. CLUSTERING 36

Chapter 4

Traveling Salesman Problem

Lecture 10: Spanning Tree
3 Oct. 10:30Instead of discussing general network design problems, we focus on traveling salesman problem specifi-

cally. And turns out that although this is a good old problem in TCS, but still, lots of improvement is
done in the past decade. Turns out, most of the improvement is based on the understanding of spanning
tree, specifically, how to sample a good enough random spanning tree.

4.1 Spanning Tree
We first look at the definition of a spanning tree.

Definition 4.1.1 (Spanning tree). A spanning tree T of a connected graph G = (V, E) is an induced
subgraph of G which spans G, i.e., V (T) = V and E(T) ⊆ E .

Remark. A spanning tree of a connected graph G can also be defined as a maximal set of edges of
G that contains no cycle, or as a minimal set of edges that connect all vertices.

Then, we’re interested in the following problem.

Problem 4.1.1 (Minimum spanning tree). Given a connected graph G = (V, E) and an edge-weight
function w : E → R+, find a spanning tree T which minimizes w(T).

There are lots of different algorithms which solve Problem 4.1.1, e.g., Prim’s algorithm, Kruskal’s
Algorithm, etc. in undergraduate algorithm courses. But turns out that by looking at the LP formulation
of this problem, we get some non-trivial result.

4.1.1 Spanning Tree Polytope
Denote the variables as {xe}e∈E , where we interpret xe = 1 if e is in the final spanning tree, otherwise
if it’s 0, then e is not in the final spanning tree.

One natural formulation is
min

∑
e∈E

xew(e)∑
e∈∂S

xe ≥ 1 ∀S ⊆ V

x ≥ 0,

where the second constraint is trying to model that for every cut set S ⊆ V, our spanning tree need to
include at least one edge from the boundary, i.e., ∂S.

Notation. If S ⊆ V, then we denote ∂S = E(S, S) be the edges between S and S.

37

https://en.wikipedia.org/wiki/Prim%27s_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm

Lecture 10: Spanning Tree

But turns out that this formulation will give us an integrality gap of 2, since for a cycle graph, just
by choosing half of the edges, i.e., xe = 1/2 for all e ∈ E , the constraints are satisfied while we know we
need to include all but one edge to form a valid spanning tree.

Remark. There are ways to strengthen the second constraints by looking at directed spanning
trees rather than the usual undirected ones to give us an LP which solves Problem 4.1.1 exactly.

We see that the problems arise from the fact that there are not enough edges to span G, so we now
require it explicitly in our LP formulation. Furthermore, to ensure there are no cycles, for any S ⊆ V, we
again make sure that the total edges we have is less than |S| − 1. Then, we have the following spanning
tree polytope.

min
∑
e∈E

xew(e)∑
e∈E

xe = n− 1∑
e∈E(S)

xe ≤ |S| − 1 ∀∅ ̸= S ⊊ V

x ≥ 0

(4.1)

where E(S) denotes the set of edges inside S, i.e.,

E(S) := {e = (u, v) ∈ E : u, v ∈ V} .

This is not solvable just by throwing this into an LP solver since there are exponentially many constraints!
Regardless, we note the following.

Remark (Separation oracle). Given a linear program (P) with x ∈ Rn as variables, a separation
oracle is an algorithm which outputs

• True if x is feasible.

• False with the violating constraint if x is not feasible.

And if we have a polynomial time separation oracle, we can solve any LP in polynomial time by
using the ellipsoid algorithm.

Now, we just state that there’s a separation oracle for the above LP, so we can solve it in polynomial
time and get a fractional solution {xe}e∈E . So our next task is to round it into an integral one.

4.1.2 Pipage Rounding
The reason we call Equation 4.1 the polytope is that there’s a way to transform the any optimal (po-
tentially fractional) solution to this LP can be transformed to an integral one while maintaining the
objective value. This can be done via the so-called pipage rounding as we’ll now see.

Notation (Tight). The set S ⊆ V is tight if
∑

e∈E(S,S) xe = |S| − 1.

Lemma 4.1.1 (Uncrossing). If S and T are tight with S ∩ T ̸= ∅, both S ∪ T and S ∩ T are tight.

Proof. Observe that since S and T are tight and S ∪ T and S ∩ T are cuts as well (hence satisfy
the constraints),

(|S| − 1) + (|T | − 1) =
∑

e∈E(S)

xe +
∑

e∈E(T)

xe

≤
∑

e∈E(S∪T)

xe +
∑

e∈E(S∩T)

xe ≤ (|S ∪ T | − 1) + (|S ∩ T | − 1),

CHAPTER 4. TRAVELING SALESMAN PROBLEM 38

https://en.wikipedia.org/wiki/Ellipsoid_method

Lecture 10: Spanning Tree

with the fact that |S|+ |T | = |S ∪ T |+ |S ∩ T |,a hence everything is equal. ■

aConsider every possible edges between S \ T , T \ S, S ∩ T and S ∪ T .

Finally, we call a tight T integral if and only if for all e ∈ E(T), xe ∈ {0, 1}; and a tight T fractional
if there exists e ̸= f ∈ E(T) such that xe and xf are fractional.1 We first see the deterministic rounding
algorithm.
Algorithm 4.1: Minimum Spanning Tree – Pipage-Rounding
Data: A connected graph G = (V, E), edge weight w : E → R+, solution x of Equation 4.1a

Result: A minimum spanning tree T

1 while x /∈ Nm do // not integral
2 T ← minimal tight fraction set // inclusion-wise minimalb

3 f, g ← fractional edges // f, g ∈ E(T)
4 if w(f) > w(g) then // ensure w(f) ≤ w(g)
5 swap(f , g)

6 while increase xf and decrease xg by a unit do // by solving Equation 4.2
7 if xf or xg becomes integral then
8 break
9 else if ∃T ′ ⊊ T is tight then

10 break

11 T ←Subgraph(G,x) // construct a spanning tree
12 return T

aBy using separation oracle.
bi.e., ∄T ′ ⊊ T tight fractional set.

Remark (Implementation detail). There are two non-trivial steps in Algorithm 4.1.

• line 6: This continuous process is done by taking δ from solving the following LP as the total
unit we should increase/decrease:

max δ

y = x+ δef − δeg∑
e∈E(S)

y − e ≤ |S| − 1 ∀S ⊆ V

0 ≤ y ≤ 1,

(4.2)

where ei is the unit vector with 1 at entry i. Again, this is in the similar form as Equation 4.1,
and there’s a separation oracle which solves this LP in polynomial-time.

• line 2: Start from the whole vertex set V, and we simply look at f which is none-integral edge
and ask can we increase it or not, i.e., we ask the separation oracle for Equation 4.2, and if
there’s a smaller tight fraction set inside T , δ > 0 strictly, and we just keep searching in this
way. We’ll see what does this mean exactly in Lemma 4.1.2.

Our goal now is to show that during the pipage rounding, x remains feasible and
∑

e∈E xew(e) will
not increase.

We first show that
∑

e∈E xew(e) will not increase. This is because from our design,
∑

e∈E xe remains
unchanged, while we increase xf while decrease xg for w(f) ≤ w(g), hence the total cost for the spanning
tree decreases.

To show x remains feasible, first note that the non-tight sets are handled (captured) in line 9, as for
tight sets, we have Lemma 4.1.2.

Lemma 4.1.2. All tight sets remain tight after running line 6.

1We can equivalently require only one xe being fractional, but since T is tight, there’ll another f ̸= e such that xf is
fractional as well.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 39

Lecture 10: Spanning Tree

Proof. The only way for a tight set becomes over-tight is when we increase xf in line 6, an already
tight set U becomes over-tight. But if this is the case and U is violated, then U ∋ f and U ̸∋ g and
U is tight, we have U ∩ T is tight from Lemma 4.1.1, contradicting the minimality of T ■

Remark. From the poof, we can now find minimal T by increasing a fractional xf : if some set U is
not violated, then T ∩ U is tight, so we just keep nesting and get the minimal one.

Now, it remains to show Algorithm 4.1 terminates in polynomial time.

Lemma 4.1.3. Algorithm 4.1 in a polynomial time algorithm.

Proof. Observe that

(a) line 7 can only happen m times: at most m edges can be fractional at first, and after one
becomes integral, it remains integral.

(b) line 9 can only happen n times: at most n nodes can be in T at first, and when line 9 is
triggered, the size of T decreases by at least 1 and never goes up.

In all, we see that Algorithm 4.1 is a polynomial time algorithm. ■

Note. Notice that in line 9, we require T ′ ⊊ T , and if it’s triggered, in the next iteration when
choosing T in line 2, we’ll need to choose a strictly smaller T compare to the last iterationa in order
to make Lemma 4.1.3 valid.

aThis is guaranteed by Lemma 4.1.2 since we know the only we change is xf and xg , and if some new T ′ can
become tight, it has non-empty intersection with T and hence as the remark, we can find such a T ′.

We see that this implies the following.

Theorem 4.1.1. Algorithm 4.1 solves Problem 4.1.1 exactly in polynomial time.

Proof. Firstly, Algorithm 4.1 is a polynomial time algorithm from Lemma 4.1.3. Also, since Equa-
tion 4.1 is an LP-relaxation of Problem 4.1.1 while we know that ■

And indeed, we have a randomized version of Algorithm 4.1.
Algorithm 4.2: Minimum Spanning Tree – Randomized Pipage-Rounding
Data: A connected graph G = (V, E), edge weight w : E → R+, solution x of Equation 4.1a

Result: A minimum spanning tree T

1 while x /∈ Nm do // not integral
2 T ← minimal tight fraction set // inclusion-wise minimalb

3 f, g ← fractional edges // f, g ∈ E(T)
4 if w(f) > w(g) then // ensure w(f) ≤ w(g)
5 swap(f , g)

6 a← maxa xf ← xf + a, xg ← xg − a remain feasible // a > 0
7 b← maxb xf ← xf − b, xg ← xg + b remain feasible // b > 0

8 if rand((0, 1))< b
a+b then // w.p. b

a+b

9 xf ← xf + a, xg ← xg − a
10 else // w.p. a

a+b

11 xf ← xf − b, xg ← xg + b

12 T ←Subgraph(G,x) // construct a spanning tree
13 return T

aAgain, by using separation oracle.
bi.e., ∄T ′ ⊊ T tight fractional set.
As in the deterministic version, the same proof can show that x is feasible, and the number of iteration

will be less than m · n, hence it’s a polynomial time algorithm. Remarkably, we have the following.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 40

Lecture 10: Spanning Tree

Theorem 4.1.2. Algorithm 4.2 solves Problem 4.1.1 exactly.

Proof. To show that the cost is good enough, note that in one iteration, E
[
xend

]
= xstart, then

E
[
xfinal] = xLP,

hence any possible xfinal satisfies ∑
e∈E

xfinal
e w(e) =

∑
e∈E

xLP
e w(e),

hence we get a 1-approximation algorithm, i.e., Algorithm 4.2 solves Problem 4.1.1 exactly. ■

From Algorithm 4.2, xfinal can be interpreted as the distribution of spanning trees, i.e., we have

E
[
xfinal] = xLP ⇔ ∀e ∈ E ,Pr(e ∈ T) = xLP

e ,

where the probability depends on the randomness introduce in Algorithm 4.2, i.e., xfinal
e . So, from now

on, when we say we sample a spanning tree from x, what we mean is to construct a spanning tree w.r.t.
the solution x to the spanning tree polytope using Algorithm 4.2.

4.2 Negative Correlation
One of the reasons why we’re interested in Algorithm 4.2 is because it produces a negative correlated
distribution, which leads to a strong concentration behavior, i.e., we have control on what kind of
spanning tree we’re going to get. Firstly, if xfinal

e are independent, then

E

[∏
e∈S

xfinal
e

]
= Pr(S ⊆ T) =

∏
e∈S

Pr(e ∈ T) =
∏
e∈S

xLP
e .

But since we know that xfinal
e are not independent for sure since they depend on a sequence of steps

executed by Algorithm 4.2, it’s non-trivial to analyze. We now see the main result in this section.

Theorem 4.2.1 (Negative correlation). For all S ⊆ E ,

E

[∏
e∈S

xfinal
e

]
= Pr(S ⊆ T) ≤

∏
e∈S

Pr(e ∈ T) =
∏
e∈S

xLP
e .

Proof. Let yi be x after ith iteration maintained by Algorithm 4.2, it’s sufficient to show

E

[∏
e∈S

yi+1
e | yi

]
≤
∏
e∈S

yie

since if this holds, say Algorithm 4.2 runs M iterations in total, then

E

[∏
e∈S

xfinal
e

]
= E

[∏
e∈S

yMe

]
= E

[∏
e∈S

yMe | yM−1

]
≤
∏
e∈S

yM−1
e ,

any by taking expectation again iteratively, we obtain the desired result down to
∏

e∈S y
0
e . Now,

consider that in the ith iteration of Algorithm 4.2, for f, g picked in line 3:

(i) f, g /∈ S: trivially holds.

(ii) f ∈ S, g /∈ S:a we have E
[∏

e∈S y
i+1
e | yi

]
=
∏

e∈S\{f} y
i
e · E

[
yi+1
f | yi

]
=
∏

e∈S y
i
e where

E
[
yi+1
f | yi

]
= yif is the designed from Algorithm 4.2.

(iii) f, g ∈ S. Suffices to compare E
[
yi+1
f · yi+1

g | yi
]

and yif · yig, and the goal is to show ≤.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 41

Lecture 11: Asymmetric TSP

(a) E
[
(yi+1

f + yi+1
g)2 | yi

]
= (yif + yig)

2 since yi+1
f + yi+1

g = yif + yig almost surely.

(b) E
[
(yi+1

f − yi+1
g)2 | yi

]
≥ (yif + yig)

2 since the variance of any random variable is non-
negative.

We see that by subtracting them, we have E
[
yi+1
f · yi+1

g | yi
]
≤ yif · yig as desired.

In all cases, the hypothesis for i holds, hence the theorem is proved. ■

aAnd also g ∈ S and f /∈ S, since they’re symmetric.

Lecture 11: Asymmetric TSP
5 Oct. 10:30As previously seen. We have shown that given any feasible x, there’s a distribution of spanning

tree T such that

(a) For all e ∈ E , Pr(e ∈ T) = xe

(b) For all S ⊆ E , Pr(S ⊆ T) ≤
∏

e∈S xe from Theorem 4.2.1.

From these, we can deduce the following.

Theorem 4.2.2. For all S ⊆ E and γ ≥ 1,

Pr

(
|S ∩ T | ≥ γ

∑
e∈S

xe

)
≤
(
e

γ

)γ
∑

e∈S xe

.

Proof. This follows directly from the same proof of Chernoff bound. Assume we have k random
variables X1, . . . , Xk ∈ {0, 1} with X =

∑k
i=1Xi and µ = E [X]. Then,

Pr(X ≥ γµ) = Pr
(
etX ≥ etγµ

)
≤

E
[∏k

i=1 e
tXi

]
etγµ

where the inequality follows from Markov’s inequality. If Xi are independent, we can move the
expectation inside the product, but if we don’t, we directly apply Theorem 4.2.1 to get the same
result, so we can proceed as usual. ■

4.3 Asymmetric Traveling Salesman Problem
Now we can talk about the asymmetric traveling salesman problem. Before we state the problem, we
first look at one important definition.

Definition 4.3.1 (Tour). Given a graph G = (V, E), a tour (a0, . . . , ak) where ai ∈ V satisfies a0 = ak,
(ai, ai+1) ∈ E and visited all the vertices, i.e., {ai}ki=0 = V.

Problem 4.3.1 (Asymmetric TSP). Given a complete bidirected graph G = (V, E) and a distance
function d : E → R+ satisfying the directed triangle inequality.a Asymmetric TSP asks to find a
tour (a0, . . . , ak) which minimizes

∑k−1
i=0 d(ai−1, ai).

aCompare to the regular triangle inequality, now the order matters, i.e., for all a, b, c ∈ V, d(a, c) ≤ d(a, b)+d(b, c).

Remark. An equivalent (but seemingly more general) formulation of Problem 4.3.1 is to remove the
complete graph restriction and also the directed triangle inequality property of d. But they’re still

CHAPTER 4. TRAVELING SALESMAN PROBLEM 42

https://en.wikipedia.org/wiki/Chernoff_bound

Lecture 11: Asymmetric TSP

equivalent since given this general problem, we can convert back to Problem 4.3.1 by setting

d′(u, v) = min d(u, v).

Note (SOTA). The approximation ratio of Problem 4.3.1 is improved as follows.

lg n c lg n O(log n/ log log n)

5500 22

1982∼2009 2009∼2010

2010∼2018

2018∼2020

where in 2009, c ∈ (0, 1).

4.3.1 Asymmetric TSP Polytope
We now try to solve Problem 4.3.1. The idea is simple, given T ⊆ E for T being a multiset, we want T
to satisfy

(a) T is connected (in undirected sense)

(b) T is Eulerian: deg+T (v) = deg−T (v) for all v ∈ V2

which allow us to potentially construct a valid tour by shortcut some repetitions if there’s any. We
then have the following LP formulation, which is the so-called asymmetric TSP polytope. Denote our
variables as {xe}e∈E , then

min
∑
e∈E

xed(e)∑
e∈∂+S

xe ≥ 1 ∀∅ ̸= S ⊊ V

∑
e∈∂+{v}

xe =
∑

e∈∂−{v}

xe = 1 ∀v ∈ V

x ≥ 0

(4.3)

where ∂+S := {(u, v) ∈ E | u ∈ S, v /∈ S} and vice versa, and ∂S := ∂+S ∪ ∂−S. Now, to solve this LP,
the idea is to maintain Eulerianity while gradually being more connected. This can be done via cycle
cover LP.

As previously seen. Recall that C ⊆ E is a cycle cover if c is disjoint union of directed cycles and
v is in exactly one cycle.

Now, we have the following.

Lemma 4.3.1. There is a cycle cover C such that
∑

e∈C d(e) ≤ OPTLP.

To prove Lemma 4.3.1, we need to have some understanding about the perfect matching polytope.
This is not that well-known since matching problem can be solved in many ways.

Remark (Perfect matching polytope). Suppose we have an unweighted bipartite graph G = (A⊔B, E)
and a weight function w : E → R+. We want to find a perfecting matching with minimum cost.

2We use deg+ to denote the out degree, while deg− to denote the in degree.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 43

https://en.wikipedia.org/wiki/Eulerian_path
https://en.wikipedia.org/wiki/Eulerian_path

Lecture 11: Asymmetric TSP

This can be modeled by the following LP.

min
∑
e∈E

xew(e)∑
e∈E(u,v−u)

xe = 1 u ∈ A ⊔B

x ≥ 0.

This LP is exact in the sense that for any feasible x, there exists a perfect matching (integral
solution) M such that

∑
e∈M w(e) ≤

∑
e∈E xew(e).

Now we can prove Lemma 4.3.1.
Proof of Lemma 4.3.1. We simply construct a complete bipartite graph with vertex set Vout ⊔Vin
such that the Vout = Vin = V with the edge weight being x(a,b) for a in the left-hand side while b in
the right-hand side.

Observe that in B, every vertex has x value exactly 1, hence from perfect matching polytope,
we know that there exists a perfect matching M in B with cost (

∑
e∈M w(e)) less the LP cost

(
∑

e∈E xew(e)), with the fact thatM corresponds to a cycle cover in the original graph by considering
picking (a, b) ∈M the directed edge (a, b) ∈ E , so we’re done. ■

Then, we have the following algorithm.
Algorithm 4.3: Asymmetric TSP – Cycle Covered
Data: A connected graph G = (V, E), distance function d : E → R+

Result: A tour T

1 C ← minimum cycle cover of G
2 V ′ ← ∅
3 for C ∈ C do
4 x←rand(C) // Choose one representative
5 V ′ ← V ′ ∪ {x}
6 T ←ATSP(G[V ′], d) // tour among representatives
7 return T ←Stitch(C,T)
8

9 Stitch(C, T):
10 for C ∈ C do
11 T ← T ∪ C // Connects T with C

12 return T

Theorem 4.3.1. Algorithm 4.3 is a lg n-approximation algorithm.

Proof. We simply observe that for every recursive call of solving cycle cover LP, since we don’t
have self-loops, so the number of vertices, V ′, constructed in Algorithm 4.3 will decrease by a factor
of 2 since every cycle need at least two vertices, so the total number of recursive calls will be at
most lg n. From the fact that in each recursive call, the cost will be at most the cost of the original
LP solution for the entire graph from Lemma 4.3.1,a so by adding the cost up (i.e., stitching the
tour together), the total cost will be at most lg n · OPT, proving the result. ■

aRecall that we’re recursively solving for subgraph of G.

Remark (Repetition). Observing that in Algorithm 4.3, our construction might not return a valid
Eulerian tour. But by triangle inequality, we can always skip some vertices when we encounter
already visited vertices, so we’re still fine.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 44

https://en.wikipedia.org/wiki/Eulerian_path

Lecture 11: Asymmetric TSP

4.3.2 Reducing to Thin Tree
Now let’s see more sophisticated approach to Problem 4.3.1 where we first make sure T is connected,
and try to make it Eulerian afterwards. One problematic case is that when there’s one S ⊆ V such that
T has lots of edges in ∂S, then since we want to ensure deg+T (v) = deg−T (v) for all v ∈ V, by summing
up for all v, we’ll need to balance this out by (potentially) adding lots of edges on top of T to make it
Eulerian.

Definition 4.3.2 ((α, β)-thin). A tree T ⊆ E is (α, β)-thin if
∑

e∈T d(e) ≤ αOPT and |T ∩ ∂S| ≤
β
∑

e∈∂S xe for all ∅ ̸= S ⊊ V.

Let’s first see a lemma.

Lemma 4.3.2. We can construct an (α+ 2β)-approximation tour from an (α, β)-thin tree.

Proof. Suppose we have an (α, β)-thin tree T , we want to find a multi-subgraph f : E → {0} ∪ N
such that

(a) f(e) ≥ 1 for all e ∈ T

(b)
∑

e∈∂+{v} f(e) =
∑

e∈∂−{v} f(e) for all v ∈ V.

We can still define an LP as follows.

min
∑
e∈E

f(e)d(e)

f(e) ≥ 1 ∀e ∈ T∑
e∈∂+S

f(e) ≥
∣∣T ∩ ∂−S∣∣ ∀∅ ̸= S ⊊ V

f ≥ 0.

Claim. The above LP is exact in the sense that if we have an LP solution f , we can get a tour
of cost

∑
e∈E f(e)d(e).

Proof. This is just like max-flow min-cut theorem. ⊛

Now, let y be

ye =

{
1 + 2βxe, if e ∈ T ;
2βxe, if e /∈ T,

and the goal is to show ye is feasible to the LP. But the only non-trivial constraints we need to
check is

∑
e∈∂+S ye ≥ |T ∩ ∂−S|. This follows from∑

e∈∂+S

ye ≥ 2β
∑

e∈∂+S

xe = β
∑
e∈∂S

xe ≥ |T ∩ ∂S| ≥
∣∣T ∩ ∂−S∣∣ .

Hence, y is a feasible solution of the LP, so we get a tour with cost
∑

e∈E yed(e), which is just∑
e∈E

yed(e) =
∑
e∈T

d(e) + 2β · OPTLP ≤ (α+ 2β)OPTLP

since T is itself (α, β)-thin, which proves the result. ■

We see that Problem 4.3.1 boils down to finding an (α, β)-thin tree. To do this, we’ll show that
by randomly sampling a spanning tree, it’ll be a thin tree with high probability. But the argument is
non-trivial, and turns out that the number of small cuts (approximate min-cuts) is important, so we now
look into this.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 45

https://en.wikipedia.org/wiki/Eulerian_path
https://en.wikipedia.org/wiki/Eulerian_path
https://en.wikipedia.org/wiki/Max-flow_min-cut_theorem

Lecture 12: ATSP with Random Spanning Tree

4.3.3 Number of Small Cuts
Given an undirected graph G = (V, E) and a weight function x : E → R+, denote λ to be the minimum
edge-connectivity, i.e.,

λ := min
∅ ̸=S⊊V

∑
e∈∂S

x(e),

we want to ask how many S achieves the value λ, i.e., how many edge min-cuts are there? It’s a well-
known fact that the number of the min-cuts are n2 (or

(
n
2

)
to be exact), which is tight. Now, we’re

interested in approximate min-cuts, or α-cuts: given α ∈ N, we ask that how many α-cuts S are there
where an α-mincuts is defined as cuts which achieves

∑
e∈∂S x(e) ≤ α ·λ? The following theorem answers

this.

Theorem 4.3.2. For all α ∈ N, there are at most 2n2α α-mincuts.

Lecture 12: ATSP with Random Spanning Tree
10 Oct. 10:30Let’s prove Theorem 4.3.2.

Proof of Theorem 4.3.2. We first see a randomized algorithm which solves the α-mincuts problem.

Algorithm 4.4: Small α-Mincuts – Karger’s Algorithm [Kar93]
Data: A connected graph G = (V, E), a weight function x : E → R+, α
Result: An α-mincut S

1 while |V| > 2α do
2 e←rand(E, xe) // Sample w.p. xe
3 contract(G, e) // new x is the sum of multi-edges’ x

4 S ←rand-subset(V) // |V| = 2α
5 S ←uncontract(S)
6 return S

Now, if S is an α-mincut, we’re interested in the probability of S is outputted from Algo-
rithm 4.4.

Remark. Observe that if e = (u, v) is contracted where u ∈ S while v /∈ S, then S will definitely
not be outputted.

Denote Pr(S survives when |V| = i) =: Pi, then if S survived until |V| = i, we see that S is still
an α-mincut, and in the current G, by considering a single vertex as a potential mincut, we have∑

e∈∂S xe

α
≤ λ ≤ Ev∈V

 ∑
e∈∂{v}

x(e)

 =
2

i

∑
e∈E

x(e)⇒ Pi = 1−
∑

e∈∂S x(e)∑
e∈E x(e)

≥ 1− 2α

i
=
i− 2α

i

since Pi = 1−Pr(S does not survive when |V| = i), while the latter event happens when one of the
boundary edges in ∂S is picked to be contracted. We then see that

Pr(S is outputted) ≥ Pn · Pn−1 · · · · · P2α+1 ·
1

22α

=

(
n− 2α

n

)(
n− 1− 2α

n− 1

)
· · ·
(

1

2α+ 1

)
· 2−2α

=
(2α)!

n(n− 1) . . . (n− 2α+ 1)
· 2−2α

≥ 1

(2n)2α
,

then the result follows because the probability should sum to 1. ■

CHAPTER 4. TRAVELING SALESMAN PROBLEM 46

Lecture 12: ATSP with Random Spanning Tree

4.3.4 Random Thin Spanning Tree
Now, we’re ready to show that a randomly sampled spanning tree will be a thin tree with high probability.
Recall the spanning tree polytope, with our ATSP polytope for Problem 4.3.1. Then given an optimal x
of Equation 4.3, define yuv = xuv + xvu and z = n−1

n y for Equation 4.1.3

Remark. z is feasible for the spanning tree polytope.

Proof. Since we have scaled down y, hence
∑

e∈E ze = n − 1. While for the second constraint, all
∅ ̸= S ⊊ V, we have ∑

e∈E(S)

xe =
∑
v∈S

∑
e∈∂+{v}

x(e)−
∑

e∈E(S,S)

x(e) ≤ |S| − 1,

so z is feasible since the above sum doesn’t care about direction as well, and we even decrease it a
bit by down-scaling. ⊛

Now, we can sample a random spanning tree T ′ by using the randomized pipage rounding on z.
Specifically, we have the following algorithm.
Algorithm 4.5: Thin Spanning Tree – Randomized Pipage-Rounding
Data: A connected graph G = (V, E), weight w : E → R+, solution z of Equation 4.1
Result: A minimum spanning tree T

1 T ′ ←Randomized-Pipage-Rounding(G, w, z)
2 T ← ∅
3 for e = {u, v} ∈ T ′ do // Using the cheaper edge between (u, v) and (v, u)
4 if w((u, v)) ≤ w((v, u)) then
5 T ← T ∪ {(u, v)}
6 else
7 T ← T ∪ {(v, u)}

8 return T

We now show that T obtained from Algorithm 4.5 is indeed a thin tree.

Lemma 4.3.3. T output from Algorithm 4.5 satisfies α = 2 for (α, β)-thinness with probability at
least 1/2.

Proof. Since
E [d(T)] ≤ n− 1

n
OPTLP

since we have zuv ·min(d(u, v), d(v, u)) v.s. xuvd(u, v)+xuvd(v, u). We then see that with probability
at least 1/2 by simply using Markov’s inequality, hence the first condition of thin tree is satisfied
with probability at least 1/2. ■

Lemma 4.3.4. T output from Algorithm 4.5 satisfies β = 12 log n/ log log n for (α, β)-thinness with
probability at least 1− n−1.

Proof. Given any β, we want to bound the probability that there’s one ∅ ̸= S ⊊ V which violates
the condition. To do this, let

Ci := {S ⊆ V | z(∂S) ∈ [iλ, (i+ 1)λ)} ,

where we have
λ = min

∅ ̸=S⊆V
z(∂S) = 2 · n− 1

n
≥ 1.

Now, recall that Algorithm 4.5 uses Algorithm 4.2, hence e ∈ T ′ satisfies the negative correlation,
which essentially allows us to prove Theorem 4.2.2. Specifically, we have

3Notice that the summation over y is exactly n, but we want the sum to be n− 1, hence we scale it down.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 47

https://en.wikipedia.org/wiki/Markov%27s_inequality

Lecture 12: ATSP with Random Spanning Tree

(a) for all e ∈ E , Pr(e ∈ T ′) := ze,

(b) for all ∅ ̸= E ⊆ E , Pr(E ⊆ T ′) ≤
∏

e∈E ze,

and with this, the Chernoff bound-like concentration states that

Pr(|T ′ ∩ S| > β · z(∂S)) ≤
(
e

β

)β·z(∂S)

.

Then, we have

Pr(∃S : |T ∩ ∂S| > βz(∂S)) ≤
∞∑
i=1

Pr(∃S ∈ Ci : |T ∩ ∂S| > βz(∂S))

≤
∞∑
i=1

(2n)2(i+1) ·
(
e

β

)β·iλ

≤
∞∑
i=1

(2n)2(i+1) ·
(
e

β

)β·i

,

where we drop λ since λ ≥ 1 as we have shown, which is an even-weaker bound. From the concen-
tration bound, we see that by taking β = c · log n/ log log n for some constant c,(

e

β

)β·i

=

(
e log log n

c log n

) c log n
log log n ·i

= exp

(
c · i · log n
log log n

(1 + log log log n)− c− log log n

)
≤ exp

(
c · i · log n
log log n

(
− log log n

2

))
= exp

(
−ci

2
log n

)
= n−6i,

where the inequality holds when n is large, and the last equality is obtained from letting c := 12.
Then, we see that

Pr(∃S : |T ∩ ∂S| > βz(∂S)) ≤
∞∑
i=1

(2n)2(i+1) ·
(
e

β

)β·i

≤
∞∑
i=1

(2n)2(i+1) · n−6i ≤ 1

n
,

as desired. ■

Theorem 4.3.3. T output from Algorithm 4.5 is a (2, 12 log n/ log log n)-thin tree with probability
at least 1/2− n−1.

Proof. Combining Lemma 4.3.3 and Lemma 4.3.4 and using a union bound argument, we have the
desired result. ■

In all, we have the following.
Algorithm 4.6: Asymmetric TSP – Randomized Construction
Data: A connected graph G = (V, E), weight w : E → R+, solution z of Equation 4.1
Result: A tour T

1 T ′ ←Thin-Spanning-Tree(G, w, z)
2 T ←Thin-Tree-to-Tour(T ′)
3 return T

We finally have the following.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 48

Lecture 12: ATSP with Random Spanning Tree

Theorem 4.3.4. Algorithm 4.6 is an O(log n/ log log n)-approximation algorithm with probability
at least 1/2− n−1.

Proof. By combining Theorem 4.3.3 and Lemma 4.3.2, we will obtain a (2 + 24 log n/ log log n)-
approximation tour, proving the result. ■

4.4 Symmetric Traveling Salesman Problem
Let’s now look at a simpler version of Problem 4.3.1.

Problem 4.4.1 (Symmetric TSP). Given a complete graph G = (V, E) and a distance function
d : E → R+ satisfying the triangle inequality. Symmetric TSP asks to find a tour (a0, . . . , ak) which
minimizes

∑k−1
i=0 d(ai−1, ai).

4.4.1 Christofides-Serdyuko Algorithm
We first see a simple heuristic algorithm achieves 1.5-approximation ratio of Problem 4.4.1 due to
Christofides [Chr76] and Serdyukov [Ser78], discovered independently. Remarkably, this simple heuristic
algorithm achieves nearly the best approximation ratio we know for more than 40 years, and the SOTA
result achieves (1.5− 10−36)-approximation ratio [KKG21].

Algorithm 4.7: Symmetric TSP – Christofides-Serdyuko Algorithm [Chr76; Ser78]
Data: A connected graph G = (V, E), a distance function d : E → R+

Result: A tour T

1 T ←MST(G, d) // Compute a minimum spanning tree
2 O ← {v ∈ T : deg(v) is odd}
3 M ←Min-Matching(O, d) // Compute a minimum matching
4 T ← T ∪M
5 return T

Remark. We see that line 2 and line 3 solves the degree problem we have.

Proof. Explicitly, since we want a T to be (connected and) Eulerian, given a spanning tree, the
only problematic part is the odd degree vertices, and hence we can just match them to solve the
problem. ⊛

Clearly, Algorithm 4.7 runs in polynomial time, and we’re interested in bounding the approximation
ratio.

Theorem 4.4.1. Algorithm 4.7 is a 1.5-approximation algorithm.

Proof. Denote any optimal solution of Problem 4.4.1 by T ∗, which is an optimal tour. Then we
simply observe that d(T ′) ≤ d(T ∗) and d(M) ≤ d(T ∗)/2, and we have

d(T) = d(T ′) + d(M) ≤ 1.5 · d(T ∗),

proving the claim. ■

However, we get more insight by looking at the LP relaxation of Problem 4.4.1, and in fact, the recent
improvement is based on looking into the corresponding LP formulation.

4.4.2 Symmetric TSP Polytope
We now analyze the approximation ratio via LP formulation of Algorithm 4.7. Indeed, since there are
no directions now, we may follow the same strategy of how we solve Problem 4.3.1, i.e., we first define

CHAPTER 4. TRAVELING SALESMAN PROBLEM 49

https://en.wikipedia.org/wiki/Eulerian_path

Lecture 13: Toward Next Step: Magic Spanning Tree Distribution

the symmetric TSP polytope via a simple reduction from the asymmetric TSP polytope.

min
∑
e∈E

xed(e)∑
e∈∂S

xe ≥ 2 ∀∅ ̸= S ⊊ V∑
e∈∂{v}

xe = 2 ∀v ∈ V

x ≥ 0

(4.4)

Let x be this LP optimal solution, we now try to build a tour based on the two-step procedure as in
Algorithm 4.7:

(a) finding a spanning tree,

(b) fix it to be in the symmetric TSP polytope by finding a matching of odd degrees vertices.

To do the analysis, observe that x· n−1
n is in the spanning tree polytope as in the case of Problem 4.3.1,

which implies if we can find a minimum spanning tree T , then d(T) ≤
∑

e∈E d(x)xe.
Note that it’s not enough to just get T , we still need a matching M . Let O be the set of odd-degree

vertices w.r.t. T as defined in line 2. Notice that we may assume |O| is even, we then define the following.

Definition 4.4.1 (O-join). Given O ⊆ V and |O| even, M ⊆ E is O-join if degM (v) is odd when
v ∈ O, and degM (v) is even if v /∈ O.

With this, we define the so-called O-join LP.

min
∑
e∈E

yed(e)

y(∂S) ≥ 1 ∀S s.t. |S ∩O| odd;
y ≥ 0.

(4.5)

Lemma 4.4.1. The O-join LP is exact, i.e., if y is feasible, then there exists an O-join M such that
d(M) ≤

∑
e∈E d(e)ye.

We omit the proof here, but if we believe Lemma 4.4.1 is true, then we have the following.

Theorem 4.4.2. Algorithm 4.7 is a 1.5-approximation algorithm using LP relaxation analysis.

Proof. Since both spanning tree polytope and the O-join LP are valid LP relaxation of line 1 and
line 3, respectively, by denoting T and M obtained from solving these two LPs respectively, from
the above discussion, we know

d(T) ≤ n− 1

n
× OPTLP

for the spanning tree polytope LP and

d(M) ≤ 1

2
× OPTLP

for the O-join LP, combining these we have

d(T ∪M) = d(T) + d(M) ≤ 1.5 · OPTLP

for the STSP polytope, as desired. ■

Lecture 13: Toward Next Step: Magic Spanning Tree Distribution
12 Oct. 10:30

CHAPTER 4. TRAVELING SALESMAN PROBLEM 50

Lecture 13: Toward Next Step: Magic Spanning Tree Distribution

4.5 Beyond the 3/2 Barrier for STSP
In this section, we’ll see some ideas of the recent breakthrough on symmetric TSP, which breaks the
3/2-approximation barrier by a tiny absolutely constant [KKG21].

As previously seen. If we have a solution x in the STSP polytope, then (n − 1)/n × x is in the
spanning tree polytope and x/2 is in the O-join LP.

The advantage we’ll get is that, indeed, dividing x by 2 is wasteful, or more explicitly, we want to find
the set of odd degree vertices O w.r.t. T which defines the O-join LP with the cost less than (1/2− δ)x
for some absolutely constant δ > 0.

Intuition. The slackness comes from the difference between all cuts and O-odd cuts.

But observe that O depends entirely on the choice of T , and hence our goal now is to sample a spanning
tree T (with the corresponding O = O(T)) such that the feasible solution y(T) for the corresponding O(T)-
join LP satisfies

(a) ET [e ∈ T] = (n− 1)/n · xe,

(b) ET

[
y
(T)
e

]
≤ (1/2− δ)xe.

If this is the case, we see that

E [cost of TSP tour] ≤
(
3

2
− δ
)
· OPTLP,

which breaks the 3/2 barrier for symmetric TSP.

4.5.1 Strong Assumptions
Surely, we’ll not look into the most general setting, instead, we’ll make some strong assumptions to help
us get intuitions. Specifically, we assume that there exists a tiny constant ϵ ∈ (0, 0.01) such that

1. xe ≤ ϵ,

2.
∑

e∈∂S x(e) ≥ 2 + ϵ for all non-singleton cut S.4

The second assumption is a huge assumption, but if we have this, we see that x/(2+ϵ) satisfies all O-join
LP constraints except for the singleton cut S, and we’re going to fix this. To do so, we first define a
useful terminology.

Notation (Even). Given a tree T , the edge e = (u, v) is even if both degT (u) and degT (v) are even.

Then, we see that if we can sample a T such that

(a) ET [e ∈ T] = (n− 1)/n · xe,

(b) ET [e is even] ≥ δ,

then we’ll have

y(T)
e =

{
xe/(2 + ϵ), if e is even;
xe/2, otherwise,

which is always in the O-join polytope since if e is even, then the O-join LP constraint is irrelevant in
this case, and hence

E
[
y(T)
e

]
≤ δ xe

2 + ϵ
+ (1− δ)xe

2
<

(
1

2
− δϵ

4

)
xe,

we again get the slackness we want. Now, the goal is to find such a spanning tree distribution, which is
the tricky part.

4This means 2 ≤ |S| ≤ n− 2.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 51

Lecture 13: Toward Next Step: Magic Spanning Tree Distribution

4.5.2 Characterization of Spanning Tree Distribution
To find such a distribution, we start by characterizing some properties which are necessary for any
distribution satisfies the two conditions above. In particular, we care more about the second condition,
i.e., ET [e is even] ≥ δ, since the first one is quite easy to satisfy.

Fix a (u, v) ∈ E , we want to make sure that PrT (degT (u) and degT (v) are even) ≥ δ. Let fi and gi
be the edges incident to u and v, respectively, and by abusing the notations, we also let fi and gi be the
indicator variables indicating whether fi appears in the tree T or not.

u v
e

g1
g2

gk

f1
f2

fk

Note. Notice that degG(u) = degG(v) since in symmetric TSP, G is complete.

Now, define du := degT (u) = e+ f1 + · · ·+ fk and dv := degT (v) = e+ g1 + · · ·+ gk, we know that
du, dv ≥ 1, and to satisfy the first condition, i.e., ET [e ∈ T] = (n− 1)/n · xe, we have

E [du] = E [e+ f1 + · · ·+ fk] = E [dv] = E [e+ g1 + · · ·+ gk] =
n− 1

n
· 2

since in the symmetric TSP polytope requires that
∑

e∈∂{v} xe = 2. We’re now interested in character-
izing the probability density function of du, which we now know it’s value is at least 1 and the mean is
around 2.

Log-Coincavity

Let’s first introduce some definition.

Definition 4.5.1 (Log-concave). Let a be an integer-valued random variable, then the distribution
of a is log-concavea if

Pr(a = i) ≥
√
Pr(a = i− 1)Pr(a = i+ 1).

aIf we take the log on both sides, we’ll get a concave function.

We see that Definition 4.5.1 can be equivalently characterize as

Pr(a = i+ 1) ≤ Pr(a = i) ·
(

Pr(a = i)

Pr(a = i− 1)

)
.

Intuition (Unimodality). If a distribution is log-concave, going from a = i to a = i−1, the probability
decrease by a factor of α, then when considering i + 1, it’ll decrease even faster. This property is
called the unimodality.

Example (Binomial distribution). The binomial distribution is log-concave. Furthermore, it’s almost
an if and only if condition in our case.

Proof. If we look at du, we can think of it as the distribution of getting heads when flipping biased
coins independently with different probability each time. ⊛

With this interpretation, the distribution of du is like

(a) minimum value 1,

(b) mean 2,

(c) essentially binomial,

hence it shouldn’t behave too crazily. We can now prove the following.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 52

https://en.wikipedia.org/wiki/Unimodality
https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_distribution

Lecture 13: Toward Next Step: Magic Spanning Tree Distribution

Claim. Pr(du = 2) ≥ 1/5.

Proof. Let Pr(du = 2) =: b < 1/5, and let a := Pr(du = 1), then a ≥ (1 − 1/5)/2 = 2/5 since
otherwise Pr(du ≥ 3) > 2/5 and E [du] > 2, contradiction. Then, we see that the probability (ratio)
gap between a and b is approximately 1/2, from log-concavity, the probability sum will just not
sum up to 1, contradiction again.a ⊛

aIf a is large, then b need to be small, this large gap with log-concavity will make sure the same argument follows.

Also, by the similar argument, we have the following.

Claim. Pr(du ≥ 2) ≥ 1/2.

Conditioning

Here, we’ll see that some good properties hold after conditioning. Explicitly, let E be the event that
du + dv = 4, by the same argument as above where we now know that du + dv has minimum value of 2
with mean nearly 4, we have Pr(E) ≥ 1/10. Now, we’re going to consider the probability of Pr(du = i)
conditioning on E, i.e., Pr(du = i | E).

Remark. After conditioning, it’s still log-concave.

We see that if Pr(du = 2 | E) ≥ 10δ, then we’re done since

Pr(du = dv = 2) ≥ Pr(E) · Pr(du = 2 | E) ≥ 1

10
· 10δ = δ.

4.5.3 Toward a Contradiction
What we want is almost the case, since if Pr(du = 2 | E) ≤ 10δ, from 10σ < 1/3 and the log-concavity
and the only value du and dv can take is 1, 2, and 3, we know that 2 can’t be a mode. Hence, we see that

• 1 is the mode: Pr(du = 3 | E) ≤ 10δ,

• 3 is the mode: Pr(du = 1 | E) ≤ 10δ,

since we’re now assuming Pr(du = 2 | E) ≤ 10δ. We see that since du and dv are symmetric, we may
just assume

• Pr(du ≤ 2 | E) ≤ 20δ,

• Pr(dv ≥ 2 | E) ≤ 20δ.

We’re now going to show that this leads to a contradiction, and hence what we want is indeed the
case, i.e., Pr(du = 2 | E) ≥ 10δ, leading to Pr(du = dv = 2) ≥ δ.

Stochastic Dominance

Intuitively, stochastic dominance states that if a+ b is big, then a is big. From the above discussion with
this intuition, we have

• Pr(du ≤ 2 | du + dv ≥ 4) ≤ 20δ,

• Pr(dv ≥ 2 | du + dv ≤ 3) ≤ 20δ.

Note. From these two bound, we’re almost saying something like du + dv is positively correlated
with du, and is also positively correlated with dv.

With this intuition, we see that

Pr(du ≤ 2 and dv ≥ 2) ≤ 20δ

CHAPTER 4. TRAVELING SALESMAN PROBLEM 53

Lecture 13: Toward Next Step: Magic Spanning Tree Distribution

since the original two probability bounds’ events are disjoint, so only one will happen. Then, we have

E [du · dv] = E [du · dv | dv = 1]Pr(dv = 1) + E [du · dv | dv ≥ 2] Pr(dv ≥ 2)

≥ Pr(dv = 1) + E [3 · dv | dv ≥ 2] Pr(dv ≥ 2)−O(δ)

≥ 5−O(δ),

(4.6)

where in the first inequality, in the first term, we drop E [du · dv | dv = 1] naively since this is always
greater than 1, and for the second term, we almost have du ≥ 3 given dv ≥ 2 from the following intuition.

Intuition. If we first consider δ = 0, then given dv ≥ 2, we know that from the second bound,
du + dv ≰ 3, i.e., du + dv ≥ 4. From the first bound, this further implies du ≰ 2, i.e., du ≥ 3.

Also, for the second inequality, since Pr(dv = 1) ≤ 1/2 and

E [dv] = Pr(dv = 1) + E [dv | dv ≥ 2] Pr(dv ≥ 2) ≈ 2,

the whole sum is minimized when Pr(dv = 1) = 1/2, and we get 5−O(δ).

Remark. We see that although du, dv is nearly 2 as we know, but their product is at least 5.

Negative Correlation

Consider calculating E [du · dv] as follows,

E [du · dv] = E

[(
e+

∑
i

fi

)(
e+

∑
i

gi

)]
= E

[
e2
]
+
∑
i

(E [e]E [fi] + E [e]E [gi]) +
∑
ij

E [fi]E [gj]

= E [e] +
∑
i

(E [e]E [fi] + E [e]E [gi]) +
∑
ij

E [fi]E [gj]

≤ ϵ+ E [du]E [dv]

≤ 4 + ϵ,

(4.7)

where we use the assumption that xe ≤ ϵ. We see that Equation 4.6 and Equation 4.7 gives us a
contradiction.

In all, as discussed in subsection 4.5.1, we arrive at the following theorem.

Theorem 4.5.1. Under the assumptions, any spanning tree distribution satisfies log-concavity, con-
ditioning property, stochastic dominance property, and also negative correlation property, the 3/2
barrier of symmetric TSP can be broken.

4.5.4 Magic Spanning Tree Distribution
To see the complexity about the general cases, we now state the spanning tree distribution we’ll need in
the general case. There are actually three relevant distributions: given x ∈ [0, 1]

|E| in the spanning tree
polytope, let a distribution µ of a random spanning tree T , i.e., let µ(T) = Pr(T is sampled).

Strongly Rayleigh Distribution

Definition. Given a distribution µ(T) and p(z1, . . . , zm) :=
∑

T µ(T)
∏

e∈T ze.

Definition 4.5.2 (Real-stable). We say p is real-stable if µ(T) ∈ R for all T , and for all
z1, . . . , zm ∈ C such that Im(zi) > 0 for all i, we have p(z1, . . . , zm) ̸= 0.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 54

Lecture 13: Toward Next Step: Magic Spanning Tree Distribution

Definition 4.5.3 (Strongly Rayleigh distribution). If µ induces a real-stable p, then µ is a strongly
Rayleigh distribution.

Remark (Closure). If p(z1, . . . , zn) is real-stable, so are

(a) p(z1, z1, z3, . . . , zn),

(b) p(a, z2, z3, . . . , zn) for all a ∈ R,

(c) ∂p/∂z1,

(d) etc.

Turns out that there are lots of distributions are strongly Rayleigh, and it’s indeed a very good choice
in our case since it satisfies all log-concavity, conditioning property, stochastic dominance property, and
also negative correlation.

Max-Entropy Distribution

Nevertheless, among all strongly Rayleigh distributions, we want to choose a most random one. This
suggests we look into the notion of entropy. Denote ST be the set of all spanning trees, consider the
following maximum entropy LP :

max
∑
T∈ST

µ(T) log
1

µ(T)∑
T∈ST

µ(T) = 1∑
T∋e

µ(T) = xe ∀e ∈ E

µ ≥ 0.

⇔

min
∑
T∈ST

µ(T) logµ(T)∑
T∈ST

µ(T) = 1∑
T∋e

µ(T) = xe ∀e ∈ E

µ ≥ 0.

(4.8)

Solving this induces the following.

Definition 4.5.4 (Max-entropy distribution). The optimal solution µ for the maximum entropy LP is
the max-entropy distribution.

Observe that the maximum entropy LP has exponentially many variables, but at least this is a convex
program since x log x is a convex function, and we can indeed approximately solve it in polynomial time
with only polynomially many T ∈ ST has non-zero probability, i.e., the size of the support of µ is in
polynomial.

λ-Uniform Distribution

Finally, we have the following.

Definition 4.5.5 (λ-uniform distribution). A distribution µ(T) is λ-uniform if there exists a λ ∈
(R+ ∪ {0})n such that µ(T) =

∏
e∈T λe/M for some M .

Note (Uniform distribution). When λe = 1 for all e ∈ E , then we just have a uniform distribution
over ST.

Now, we’re going to see how these three distributions relate to each other. A technical lemma is the
following.

Proposition 4.5.1. A max-entropy distribution is always λ-uniform for some λ.

CHAPTER 4. TRAVELING SALESMAN PROBLEM 55

Proof. We can take the Lagrangian dual of the maximum entropy LP, the optimality condition
(i.e., KKT condition) will give us the result. ■

More interestingly, we have the following.

Theorem 4.5.2 (Matrix tree theorem). A λ-uniform distribution µ for ST, then the induced p is
real-stable, i.e., µ is strongly Rayleigh.

Combining Proposition 4.5.1 and Theorem 4.5.2, we have the following.

Corollary 4.5.1. A max-entropy distribution is strongly Rayleigh.

We see that it’s enough to find a max-entropy distribution, and as noted before, this can be done via
solving the maximum entropy LP in polynomial time!

CHAPTER 4. TRAVELING SALESMAN PROBLEM 56

https://en.wikipedia.org/wiki/Duality_(optimization)
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions
https://en.wikipedia.org/wiki/Kirchhoff's_theorem

Chapter 5

Semidefinite Programming and
Lasserre Hierarchy

Lecture 14: Semidefinite Programming
19 Oct. 10:30In this chapter, we’ll talk about the Lasserre hierarchy (equivalently Sum of Squares), a good reference

is Rothvoß’s lecture notes [Rot13].

5.1 Semidefinite Programming
To start with, we first introduce semidefinite programming and first develop some useful tools related to
this.

5.1.1 Positive Semidefinite Matrix
In this section, an n × n matrix A is usually symmetric with real entries. In such a case, we have the
following theorem.

As previously seen (Spectrum theorem). Given an n× n real and symmetric matrix A,

(a) There exists n real eigenvalues λ1 ≥ · · · ≥ λn.

(b) There exists n eigenvectors v1, . . . , vn which form an orthonormal basis.

This implies we can write A =
∑n

i=1 λiviv
⊤
i .a

aConversely, if A =
∑n

i=1 λiviv
⊤
i , then λi will be the eigenvalues with vi being the corresponding eigenvector.

We now introduce the notion of positive semidefinite matrices, which is the building block of semidef-
inite programmings.

Definition 5.1.1 (Positive semidefinite). A matrix A is positive semidefinite (PSD), denote as A ⪰ 0,
if for all x ∈ Rn,

x⊤Ax =
∑
ij

xiAijxj ≥ 0.

Notation. The set of real and symmetric matrices is denoted as Sn, and the set of PSD matrices is
denoted as Sn+.

An equivalent characterization is given by the following.

Lemma 5.1.1. A ⪰ 0 if and only if all eigenvalues of A is non-negative.

57

https://en.wikipedia.org/wiki/Sum-of-squares_optimization
https://en.wikipedia.org/wiki/Spectral_theorem

Lecture 14: Semidefinite Programming

Proof. If λn < 0, we have v⊤nAvn = λn < 0. On the other hand, for all x =
∑n

i=1 λivi, we know
that x⊤Ax =

∑
i α

2
iλi ≥ 0. ■

Example. Covariance matrix, identity matrix are PSD. Also, given any V , V V ⊤ is PSD as well.

Proof. For V V ⊤, we see that for all x ∈ Rn, we have x⊤(V V ⊤)x =
〈
V ⊤x, V ⊤x

〉
≥ 0. ⊛

We see that there is a deeper connection between a PSD matrix and the form of V V ⊤ for some V ,
which indeed form another equivalent characterization of PSD matrices.

Lemma 5.1.2. A matrix X is PSD if and only if X = V V ⊤ for some V ∈ Rn×k.

Proof. We already see that V V ⊤ is PSD. Now, givenX ⪰ 0, we can writeX =
∑n

i=1 λiviv
⊤
i = V V ⊤

where
V := diag

({√
λ1, . . . ,

√
λn

}) [
v1 v2 . . . vn

]
.

■

Remark. Given any two PSD A,B and α, β ≥ 0, αA+ βB ⪰ 0.

5.1.2 Semidefinite Programming
Recall that the LP with variables x ∈ Rn is in the form of

max ⟨c, x⟩
⟨ai, x⟩ ≤ bi i = 1, . . . ,m

x ≥ 0,

with input c, ai ∈ Rn and bi ∈ R. We can generalize LP to a much border class of optimization problem
by making vectors as matrices, which leads to the so-called semidefinite programming.

Definition 5.1.2 (Semidefinite programming). The semidefinite programming (SDP) with variables
X ∈ Sn is in the form of

max ⟨C,X⟩
⟨Ai, X⟩ ≤ bi i = 1, . . . ,m

X ⪰ 0,

with input C,Ai ∈ Sn and bi ∈ R.

Remark. We define the inner product between A,B ∈ Sn as

⟨A,B⟩ :=
∑

i,j∈[n]

AijBij = tr(AB).

To see that SDP is a generalization of LP, we have the following.

Lemma 5.1.3. SDP captures LP.

Proof. Given an instance of LP, i.e., given input c, ai ∈ Rn and bi ∈ R, then consider defining
C := diag(c), Ai := diag(ai). Then the corresponding SDP is exactly equal to the given LP. ■

Unlike LP, where we can solve it exactly in polynomial time. Here, there’s some pathological instances
which cause the solution of an SDP exponential to the input size.1 Nevertheless, we have the following.

Theorem 5.1.1. Most of SDPs can be solved in polynomial time.

1This is the so-called bit-complexity problem.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 58

Lecture 14: Semidefinite Programming

5.1.3 Max Cut
We one can imagine, SDP is usually regarded as a continuous optimization problem, and we now see one
application of SDP in approximation algorithm on a combinatorial optimization problem.

Problem 5.1.1 (Max cut). Given a graph G = (V, E), find a cut S ⊆ V which maximizes |∂S|.

Remark. There are various ways of achieving 1/2-approximation for max cut, including greedy,
local-search and also LP approaches. But we can prove that 1/2 is tight if we only use the above
method, i.e., we can’t even improve this approximation ratio a bit.

Let [n] := V given that n := |V|, and denote the variables being xi for i = 1, . . . , n be 1 if i ∈ S, −1
if i /∈ S. Then the following programming captures max cut when optimizing over xi ∈ R:

max
∑

(i,j)∈E

(1− xixj)/2

x2i = 1 ∀i ∈ [n].

Remark. This is a quadratic programming.

To solve this, we relax xi ∈ R to ui ∈ Rk, we have

max
∑

(i,j)∈E

(1− ⟨ui, uj⟩)/2

∥ui∥22 = 1 ∀i ∈ [n].

Now, from Lemma 5.1.2, we see that X ⪰ 0 ⇔ X = V V ⊤ for some V . This suggests that the above
relaxed programming is a SDP with V =

[
u⊤1 u⊤2 . . . u⊤n

]
for ui ∈ Rk such that

max
∑

(i,j)∈E

(1−Xij)/2 ∀i ∈ [n]

Xii = 1

X ⪰ 0

(5.1)

where we let Xij = ⟨ui, uj⟩. Since this is a relaxation for max cut, we know that OPTSDP ≥ OPT.
Just like how we do LP relaxation, we first solve Equation 5.1 to get X, and round the solution back

to get ±1 values for xi to obtain a feasible solution for max cut. A naive rounding algorithm is the
following.
Algorithm 5.1: Max Cut – Randomized Rounding
Data: A connected graph G = (V, E), a solution X for Equation 5.1
Result: A cut S ⊆ V

1 V ←Eigendecomposition(X) // X = V V ⊤

2
[
u⊤1 u⊤2 . . . u⊤n

]
← V

3 g ←rand(Sn−1) // Choose a random direction
4 S ← {i ∈ V : ⟨g, ui⟩ ≥ 0} // Choose one side
5 return S

We see that given (i, j) ∈ E , denote the contribution to the SDP as Sij , and we have

Sij =
1− ⟨ui, uj⟩

2
.

On the other hand, the expected contribution from (i, j) to Algorithm 5.1, denoted as Pij , is

Pij := Pr((i, j) is cut edge) = Pr(i, j is separated by g).

Now, the only thing we need to do is to find the ratio between Pij and Sij . And indeed, this ratio is
proved by Goemans-Williamson [GW95].

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 59

Lecture 15: Lasserre Hierarchy and Max Cut

Notation (Goemans-Williamson constant). The Goemans-Williamson constant αGW is defined as

αGW :=
2

π
min

0≤θ≤π

θ

1− cos θ
.

Remark. αGW ≈ 0.878 Moreover, we can instead write αGW as

αGW =
2

π
min

−1≤α≤1

arccos(a)

1− a
.

Lemma 5.1.4. For all (i, j) ∈ E , Pij ≥ αGW · Sij .

Proof. This can be seen from the following picture.
bad g

bad g

good ggood g
θ

θ

ui
π − θ

uj

We’re interested in what choice of g will not separate ui and uj . By drawing lines orthogonal to ui
and uj , we divide the plane into above four regions. We see that if g lies in the dotted region, then
the two inner products ⟨g, ui⟩ and ⟨g, uj⟩ will have the same sign, hence they’re not separated.

Now, since Pij = 2θ/2π = θ/π, and recall that Sij = (1− ⟨ui, uj⟩)/2, so the worst configuration
producing the smallest ratio between Pij and Sij is

Pij

Sij
≥ min

a∈[−1,1]

arccos(a)/π

(1− a)/2
= αGW,

where a := ⟨ui, uj⟩. This proves the result. ■

Theorem 5.1.2 ([GW95]). Algorithm 5.1 is an αGW-approximation algorithm in expectation.

Proof. Given S outputted from Algorithm 5.1, we see that

E [|S|]
OPTSDP

=

∑
(i,j)∈E Pij∑
(i,j)∈E Sij

≥ αGW

from Lemma 5.1.4, which proves the result. ■

Lecture 15: Lasserre Hierarchy and Max Cut
24 Oct. 10:305.2 Lasserre Hierarchy

The Lasserre hierarchy is a systematic procedure to strengthen a relaxation for an optimization problem
by adding additional variables and SDP constraints. In the last years this hierarchy moved into the focus
of researchers in approximation algorithms as they obtain relaxations have provably nice properties.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 60

Lecture 15: Lasserre Hierarchy and Max Cut

5.2.1 Local Distributions
Firstly, recall max cut and its IP formulation and the SDP relaxation. We’re interested in whether
there’s something between the IP and this SDP relaxation?

max
1

4

∑
(i,j)∈E

∥ui − uj∥22

(SDP) ∥ui∥22 = 1 ∀i ∈ [n],

→ · · · →
max

1

4

∑
(i,j)∈E

(xi − xj)2

(IP) xi ∈ {±1} ∀i ∈ [n].

The upshot is that the SDP solutions are kind of telling us the second moment information. In order
to see this, instead of optimizing over ±1, we now optimize over {0, 1}.

max
∑

(i,j)∈E

∥ui − uj∥22

∥u∅∥22 = 1 ∀i ∈ [n]

(SDP) ⟨ui, u∅⟩ = ∥ui∥22 ∀i ∈ [n]

→ · · · →
max

∑
(i,j)∈E

(xi − xj)2

(IP) xi ∈ {0, 1} ∀i ∈ [n].

Now, we ask the following question.

Problem. If u∅, {ui}i∈[n] are feasible to {0, 1}-SDP, what does it tell us about the integral solutions?

Answer. If {ui}i∈[n], u∅ is 1-dimensional, then this solution {ui}i∈[n] , u∅ encodes a cut S ⊆ V such
that

S = {i ∈ [n] | ui = 1} ,

in which case we can get
⟨ui, uj⟩ = 1(i, j ∈ S)

for all i, j ∈ [n]. Now, if {ui}i∈[n], u∅ is not 1-dimensional, then we hope that we can view the
solution {ui}i∈[n] , u∅ is encoding a distribution D over cuts S ⊆ V, in which case, we can think of

⟨ui, uj⟩ = ES∼D [1(i, j ∈ S)]

for all i, j ∈ [n], i.e., a covariance matrix. But sadly, this is not true in this exact form since a
PSD matrix doesn’t always stand for a covariance matrix of some distribution over {0, 1}-valued
assignments. ⊛

To get at least some versions of what we want, we first introduce a special kind of distribution called
2-local distribution.

Definition 5.2.1 (2-local distribution). A 2-local distribution is a set of distributions consisting of

• P̃i: distribution over {0, 1}-assignments for Xi = 1(i ∈ S) for all i ∈ [n];

• P̃ij : distribution over {0, 1}-assignments for (Xi, Xj) for all (i, j) ∈ [n]× [n],

which satisfies the 2-local consistency.

Definition 5.2.2 (2-local consistency). The set of distributions P̃i and P̃ij is 2-local consistent
if for all i, j ∈ [n] and for all θ ∈ {0, 1},

P̃i(Xi = θ) =
∑

θ′∈{0,1}

P̃ij(Xi = θ,Xj = θ′) = P̃ij(Xi = θ).

Example. If P̃i(Xi = θ) = 1 and P̃ij(Xi = θ) = 0, then this set is not a 2-local distribution.

Now, consider the {0, 1}-SDP with local probabilities. The 2-local variables are {P̃i}i∈[n]∪{P̃ij}i,j∈[n]

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 61

Lecture 15: Lasserre Hierarchy and Max Cut

with {vi}i∈[n] and v∅. Then the SDP for max cut is defined as

max
∑

(i,j)∈E

∥ui − uj∥22

⟨ui, u∅⟩ = P̃i(Xi = 1) ∀i ∈ [n]

⟨ui, uj⟩ = P̃ij(Xi = Xj = 1) ∀i, j ∈ [n]

Remark. Technically, we should also introduce another distribution P̃∅(X∅) = 1, and P̃ij is defined
for all (i, j) ∈ ([n] ∪ {∅})× ([n] ∪ {∅}). In this case, the SDP constraint reduces to

⟨ui, uj⟩ = P̃ij(Xi = Xj = 1)

for all (i, j) ∈ ([n] ∪ {∅})× ([n] ∪ {∅}).

We first investigate the objective. We see that

∥ui − uj∥22 = ∥ui∥22 + ∥uj∥
2
2 − 2 ⟨ui, uj⟩

= P̃i(Xi = 1) + P̃i(Xj = 1)− 2P̃ij(Xi = Xj = 1)

= P̃ij(Xi = 1) + P̃ij(Xj = 1)− 2P̃ij(Xi = Xj = 1) = P̃ij(Xi ̸= Xj).

Also, observe that
⟨ui, uj⟩ = EP̃ij

[xixj] ,

hence we create a matrix M ∈ R([n]∪{∅})×([n]×{∅}) such that Mij = E
P̃ij

[xixj], i.e., M = UU⊤. In this
case, the original constraint implies that M is PSD, hence overall, the SDP becomes

max
∑

(i,j)∈E

P̃ij(Xi ̸= Xj)

{P̃i} ∪ {P̃ij} is a 2-local distribution

(P) M =
(
EP̃ij

[XiXj]
)
i,j∈[n]∪{∅}

⪰ 0,

where we call this SDP P.
We see that the notion of 2-local distribution can be generalized to arbitrary number R, i.e., we can

now look at the so-called R-local distribution.

Definition 5.2.3 (Local distribution). The set of distributions {P̃A}A⊆[n]∪{∅},|A|≤R is an R-local
distribution if for all A,B ⊆ [n] ∪ {∅} with |A ∪B| ≤ R, for all C ⊆ A ∪B and θi ∈ {0, 1},

P̃C(Xi = θi ∀i ∈ C) = P̃A(Xi = θi ∀i ∈ C) = P̃B(Xi = θi ∀i ∈ C).

Note. Notice that we can also define the generalized version of 2-local consistency, but we just
encoded this in Definition 5.2.3.

Now, the R-local version of P becomes

max
∑

(i,j)∈E

P̃ij(Xi ̸= Xj)

{P̃A}|A|≤R is an R-local distribution

LassR(P) M =

(
EP̃A∪B

[∏
i∈A∪B

Xi

])
A,B

⪰ 0,

where we call this SDP LassR(P), which is how we define Lasserre hierarchy.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 62

Lecture 16: Lasserre Hierarchy Continued

Note. Notice that M ∈ R(
[n]

≤R/2)×(
[n]

≤R/2)

Lecture 16: Lasserre Hierarchy Continued
26 Oct. 10:30After defining LassR(P), we now analyze what kind of properties this hierarchy has.

Remark. Up to this time, we have seen the following.

(a) LassR(P) is a convex program with 2RnO(R) variables and constraints.

(b) We can solve this in nO(R) time.

(c) Lass2(P) is equivalent to a basic SDP, and Lassn(P) is equivalent to an IP.

5.2.2 Probabilistic Consequences
Consider

• VarP̃i
[Xi] = EP̃i

[
X2

i

]
− EP̃i

[Xi]
2

• CovP̃ij
[Xi, Xj] = EP̃ij

[XiXj]− EP̃i
[Xi]EP̃j

[Xj].

We see that we can do a conditioning: let P̃ := {P̃A}|A|≤R be an R-local distribution. Now, fix S ⊆ [n],
|S| = t, let αS = {0, 1}|S|, condition on P̃ , we get

P̃ ′ = P̃ | XS ← αS ,

where XS ← αS means Xi ← αi for all i ∈ S.

Remark. P̃ ′ is a (R− t)-local distribution.

Proof. For all A ⊆ [n], |A| ≤ R− t, we have

P̃ ′
A(XA = θA) =

P̃ (XA = θA, XS = αS)

P̃ (XS = αS)
.

⊛

Apart from this, we also see that

(a) P̃ ′ is (R− t)-wise locally consistent.

(b) If P̃ was LassR(P), P̃ ′ is feasible for LassR−t(P).

Lemma 5.2.1 (Conditioning reduces variance). For all i, j ∈ [n],

VarP̃i
[Xi]− EXj∼P̃j

[
VarP̃ij

[Xi | Xj]
]
≥ 4CovP̃ij

[Xi, Xj]
2
.

Proof. From of law of total variance, we have

VarP̃i
[Xi]− EXj

[
VarP̃ [Xi | Xj]

]
= VarP̃j

[
EP̃j

[Xi | Xj]
]
.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 63

Lecture 16: Lasserre Hierarchy Continued

Now, let Pi = P̃i(Xi = 1), Pj = P̃j(Xj = 1), Pij = P̃ij(Xi = 1, Xj = 1), we have

VarXj

[
EP̃ [Xi | Xj]

]
= EXj

[
EP̃ [Xi | Xj]

2
]
−
(
EXj

[E [Xi | Xj]]
)2

= P̃j(Xj = 1) ·
EP̃ [XiXj]

2

P̃j(Xj = 1)2
+ P̃j(Xj = 0) ·

EP̃ [Xi(1−Xj)]
2

P̃j(Xj = 0)2
− EP̃ [Xi]

2

=
P 2
ij

Pj
+

(Pi − Pij)
2

1− Pj
− P 2

i

=
1

Pj(1− Pj)

(
P 2
ij(1− Pj) + (Pi − Pij)

2 · Pj − P 2
i Pj(1− Pj)

)
=

(Pij − PiPj)
2

Pj(1− Pj)

=

(
EP̃ [XiXj]− EP̃i

[Xi]EP̃j
[Xj]

)2
E
[
X2

j

]
− E [Xj]

2

=
CovP̃ [Xi, Xj]

2

VarP̃i
[Xj]

.

Since Xi are 0-1 variable, the variance in the denominator is less than 1/4, hence we finally have

VarP̃i
[Xi]− EXj

[
VarP̃ [Xi | Xj]

]
= VarXj

[
EP̃ [Xi | Xj]

]
≥ 4 · CovP̃ [Xi, Xj]

2
.

■

Corollary 5.2.1. Suppose P̃ = {P̃A}|A|≤R is an R-local distribution which is LassR(P) feasible, then

Ej∼[n]EXj∼P̃j

[
Ei∼[n]

[
VarP̃i

[Xi]
]
− Ei∼[n]

[
VarP̃ij

[Xi | Xj]
]]
≥ 4Ei,j∼[n]

[
CovP̃ij

[Xi, Xj]
2
]
.

Furthermore, given a ∈ R+, either one of the following will happen.

(a) Ei,j∼[n]

[
CovP̃ij

[Xi, Xj]
2
]
≤ a.

(b) ∃j ∈ [n], θj ∈ {0, 1}, P̃ ′ := P̃ | Xj ← θj satisfies Ei∼[n]

[
VarP̃i

[Xi]
]
−Ei∼[n]

[
VarP̃ ′ [Xi]

]
≥ 4a.

Proof. We first prove the first statement. Lemma 5.2.1 gives a point-wise inequality, taking the
expectation on both sides with the dominanted convergence theorem, we have

Ei,j∼[n]

[
Var [Xi]− EXj [Var [Xi | Xj]]

]
≥ 4Ei,j∼[n]

[
Cov [Xi, Xj]

2
]
,

with the fact that

Ei,j∼[n]

[
Var [Xi]− EXj [Var [Xi | Xj]]

]
= Ej∼[n]EXj

[
Ei∼[n] [Var [Xi]]− Ei∼[n] [Var [Xi | Xj]]

]
,

hence conclude the first part. A probabilistic argument proves the either-or statement. ■

Remark. Corollary 5.2.1 says that either we have a small covariance, or we can reduce it by a lot.

Theorem 5.2.1. Suppose P̃ = {P̃A}|A|≤R is an R-local distribution which is LassR(P) feasible and
R ≥ 1/ϵ4+2, then there exists S ⊆ [n] such that |S| ≤ 1/ϵ4, αS ∈ {0, 1}|S|, and P̃ ′ := P̃ | XS ← αS ,
we have

Eij∼[n]

[
CovP̃ ′ [Xi, Xj]

2
]
≤ ϵ4

4
.

Moreover, S and αS can be found in poly(n, 1/ϵ).

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 64

https://en.wikipedia.org/wiki/Dominated_convergence_theorem

Lecture 16: Lasserre Hierarchy Continued

Proof. We actually have a constructive proof, i.e., we directly give an algorithm which runs in
poly(n, 1/ϵ) and find the desired i, j.

Algorithm 5.2: Theorem 5.2.1 – Construction

Data: P̃ , ϵ > 0
Result: P̃ ′ with expected covariance smaller than ϵ4/4, S

1 ℓ← 0, P̃ (ℓ) ← P̃ , S ← ∅
2 for ℓ = 0, 1, . . . , 1/ϵ4 do
3 if Ei,j

[
CovP̃ (ℓ) [Xi, Xj]

2
]
≤ ϵ4/4 then

4 return P̃ (ℓ) // P̃ (ℓ) = P̃ | XS ← αS, S
5 else
6 Find jℓ+1 ∈ [n] \ S, θℓ+1 ∈ {0, 1} // Guaranteed in Corollary 5.2.1
7 P̃ (ℓ+1) ← P̃ (ℓ) | Xjℓ+1

← θℓ+1

8 S ← S ∪ {jℓ+1}

To analyze Algorithm 5.2, observe that if Algorithm 5.2 returns, then we have a desired property,
so we only need to ensure it’ll meet the condition in line 3 in 1/ϵ4 iterations. Now, for a local
distribution Q, let Var [Q] := Ei∼[n] [VarQ [Xi]] and Cov [Q] := Ei,j∼[n] [CovQ [Xi, Xj]]. We see
that we only fail if in every iteration, we reach line 5, i.e., Cov[P̃ (ℓ)] ≤ ϵ4/4 for all ℓ. But from
Corollary 5.2.1, we know that the P̃ (ℓ+1) we find will have the property that

Var[P̃ (ℓ−1)]−Var[P̃ (ℓ)] ≥ 4 · ϵ4/4 = ϵ4 ⇒ Var[P̃ (ℓ)] ≤ Var[P̃ (ℓ−1)]− ϵ4.

By telescoping, we have

Var[P̃ (1/ϵ4)] ≤ Var[P̃ (0)]− 1

ϵ4
· ϵ4 = Var[P̃]− 1 ≤ 1

4
− 1 < 0,

a contradiction, and hence we must terminate, finishing the proof. ■

Remark. Theorem 5.2.1 says that suppose we have a local distribution over n variables with sufficient
large locality. Then turns out that there’s a small subset of variables, if we fix them, they’ll almost
determine all other variables.

Finally, we have the following algorithm.
Algorithm 5.3: Max Cut – PTAS
Data: A dense graph G = (V, E) with |E| ≥ ϵn2, ϵ > 0
Result: A cut S

1 R← 1/ϵ4 + 2

2 P̃ := {P̃A}|A|≤R ←Solve(LassR(P))
3 P̃ ′ ←Reduce-Variance(P̃) // Eij∼[n]

[
CovP̃ ′ [Xi, Xj]

2
]
≤ ϵ4/4

4

5 // Rounding
6 for i ∈ V do
7 λi ←Ber(P̃ ′(Xi = 1))

8 S ← {i ∈ V : λi = 1}
9 return S

Remark. The rounding method in Algorithm 5.3 (i.e., line 4) is ridiculously simple compare to
Algorithm 5.1! P̃ ′ basically tells you everything.

We indeed have the following guarantee.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 65

https://en.wikipedia.org/wiki/Polynomial-time_approximation_scheme

Lecture 17: Graph Coloring

Theorem 5.2.2 (PTAS for max cut). For any ϵ > 0, given a graph G = (V, E) such that |E| ≥ ϵn2,
there exists a (1− 4ϵ)-approximation algorithm runs in nO(1/ϵ4)-time.

We see that as long as the graph is dense enough, we can spend more and more time to get a better
approximation, which is the whole point of Lasserre hierarchy.

Lecture 17: Graph Coloring
31 Oct. 10:30Let’s first prove Theorem 5.2.2.

Proof of Theorem 5.2.2. The running time for Algorithm 5.3 is clear. Denote pi = P̃ ′(Xi = 1),
then we see that the expected fraction of edges cuts is

E(i,j)∈E

[
Pr
ALG

(Xi ̸= Xj)
]

=EXS
E(i,j)∈E [pi + pj − 2pipj]

≥EXS
E(i,j)∈E

[
pi + pj − 2EP̃ ′ [XiXj]− 2

∣∣pipj − EP̃ ′ [XiXj]
∣∣]

=E(i,j)∈E
[
EP̃ [Xi] + EP̃ [Xj]− 2EP̃ [XiXj]

]︸ ︷︷ ︸
Lass

− 2EXS
E(i,j)∈E

[
pipj − EP̃ ′ [XiXj]

]︸ ︷︷ ︸
Err

.

Recall that previously, we only have control on Cov2
P̃ ′ = Cov2(P̃ | XS ← αS), which is over the

whole i, j ∼ [n]. But now the error term (the second term) is only over (i, j) ∼ E , hence we define

Cov2E

[
P̃ | XS ← αS

]
= EXS

E(i,j)∼E

[
Cov [Xi, Xj | SS]

2
]
.

Claim. Cov2E [P̃ | S] ≤ Cov[P̃ | XS ← αS]/ϵ ≤ ϵ3.

Proof. We see that

n2 · Cov2
[
P̃ | XS ← αS

]
= Cov2Σ

[
P̃ | XS ← αS

]
≥ Cov2E,Σ

[
P̃ | XS ← αS

]
= m · Cov2E

[
P̃ | XS ← αS

]
,

where subscript Σ is when we replace the expectation by summation in the covariance. With
the fact that m← ϵn2, we’re done. ⊛

Now, since we know that Lass ≥ OPT ≥ 1/2, we have

E(i,j)∈E

[
Pr
ALG

(Xi ̸= Xj)
]
≥ Lass−2ϵ ≥ Lass(1− 4ϵ),

finishing the proof. ■

5.3 Graph Coloring
Return to the SDP, first, we introduce a new definition.

Definition 5.3.1 (Coloring). Given a graph G = (V, E), a (valid) coloring χ : V → [c] is a function χ
such that for all (i, j) ∈ E , χ(i) ̸= χ(j).

Now, consider the following problem.

Problem 5.3.1 (Graph coloring). Given a graph G = (V, E), find a coloring χ : V → [c] while mini-
mizing c.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 66

https://en.wikipedia.org/wiki/Polynomial-time_approximation_scheme

Lecture 17: Graph Coloring

Before trying to solve the graph coloring, we note that it’s trivial to get n-coloring (by using different
color for every node). But in fact, this is the best we can do: graph coloring is extremely hard!

Theorem 5.3.1. For all ϵ > 0, it’s NP to get n1−ϵ-approximation.

People start to consider some promise version of graph coloring, i.e., if we directly assume that G
admits a c-coloring, what can we say?

• c = 1: G has no edges, hence trivial.

• c = 2: G is bipartite, so we can color the graph alternatively, so this can be solved exactly.

• c = 3: We can do Õ(n1/4)-approximation (quite shameful...)

Remark (SOTA for c = 3). For c = 3, someone showed that we can do Õ(n0.199...), i.e., around Õ1/5.
Also, ω(1)-approximation is NP!

Analogous to max cut, we design the following SDP relaxation of graph coloring with variables being
vectors vi for i ∈ V.

min 0

⟨vi, vi⟩ = 1 ∀i ∈ V
⟨vi, vj⟩ = −1/2 ∀(i, j) ∈ E .

(5.2)

Note. We don’t have an actual objective function!

Claim. If G is 3-colorable, there exists {vi}i∈V that are feasible for Equation 5.2.

Proof. Consider 3 colors C1, C2, and C3, then if i has Cj , we let i gets vector vj with all vectors
vj , vj′ are 120◦ away.

v2

v3

v1
120◦

⊛

5.3.1 Independent Sets
Turns out that the independent set is highly related to solving just Equation 5.2, as we’ll soon see.

Definition 5.3.2 (Independent set). Given a graph G = (V, E), a set S ⊆ V is independent if for all
(i, j) ∈ E , either i /∈ S or j /∈ S.

The notion of independent set is useful since we can transform the graph coloring problem into finding
independent sets as suggests by Lemma 5.3.1.

Lemma 5.3.1. For a graph G = (V, E), then G is c-colorable if and only if V can be partitioned to
V1, . . . , Vc such that Vi is independent.

With Lemma 5.3.1, if we can find large independent sets and partition the graph into not too many
of those, we’re done. Note that the size of independent sets is related to the maximum degree.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 67

Lecture 18: Graph Coloring via Independent Sets Decomposition

Notation. We denote the maximum degree of a graph G = (V, E) by ∆ := ∆(G) := maxv∈V deg(v).

Remark (Usefullness of ∆). Given ∆, we will have a trivial ∆-coloring; also, we know that we can
find independent set with size n/(∆ + 1) = Ω(n∆−1).

Proof. The coloring part is clear. As for finding independent set, we see that by randomly include
one vertex to our independent set, we at most ∆ vertices will be ruled out: they can’t be in the
independent set now. ⊛

Now, after solving Equation 5.2, notice that we only have feasibility, with the fact that the solution
are not guaranteed to be perfectly aligned in exactly three vectors, hence it’s a bit confusing what to do
next. However, recall that it’s also good enough to find a large independent set, and recall the max cut
problem, where we want to maximize the number of edges crossing a cut set, which is similar to what
we’re trying to do here. So, inspired by which, we can round the solution, but observe the following.

v2

v3

v1

v2

v3

v1

r r

0 ϵ

Figure 5.1: If we do the rounding as in max cut, we may end-up including more than we want, so we set
up some threshold.

This suggests that we round it with threshold, i.e., consider the following algorithm.
Algorithm 5.4: Graph Coloring – Independent Set Rounding of 3-Colorable Graph
Data: A 3-colorable graph G = (V, E)
Result: An independent set S

1
{
vi ∈ Rd

}n
i=1
←Solve(SDP)

2 r ← N (0, Id) // ri ∼ N (0, 1)

3 S(ϵ)← {i ∈ V : ⟨r, vi⟩ ≥ ϵ} // ϵ =
√
2/3 · ln∆

4 S′(ϵ) = {i ∈ S(ϵ) : ∄j ∈ S(ϵ) s.t. (i, j) ∈ E} // Make S independent
5 return S′(ϵ)

Remark. Algorithm 5.4 is the rounding algorithm of Equation 5.2 in the sense of feasibility,a and
notice that it gives us an independent set, rather than a coloring.

aRecall that there’s no objective in Equation 5.2

Lecture 18: Graph Coloring via Independent Sets Decomposition
2 Nov. 10:30We’re now interested in how large the independent set Algorithm 5.4 outputs. To start analyzing, since

the r sampled in line 2 is Gaussian, recall the following.

As previously seen (Gaussian distribution). The probability density function for Gaussian distribu-
tion is

p(x) =
1√
2π
e−x2/2,

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 68

https://en.wikipedia.org/wiki/Normal_distribution

Lecture 18: Graph Coloring via Independent Sets Decomposition

and the cumulated density function is

Φ(x) = Pr
g
(g ≤ x) =

∫ x

−∞
p(x) ds, Φ(x) = Pr

g
(g ≥ x) = 1− Φ(x).

From the spherical symmetry, we have ⟨r, vi⟩ ∼ N (0, 1) for all i ∈ V. Moreover, since the probability
of i being in S(ϵ) is exactly Φ(ϵ), from the linearity of expectation, we have E [|S(ϵ)|] = n · Φ(ϵ).

Lemma 5.3.2. Pr(i /∈ S′(ϵ) | i ∈ S(ϵ)) ≤ ∆Φ(
√
3ϵ).

Proof. Fix any (i, j) ∈ E , it’s sufficient to show Pr(j ∈ S(ϵ) | i ∈ S(ϵ)) ≤ Φ(
√
3ϵ). And from the

fact that all vj are 120◦ apart, we hence can write

vj = −
1

2
vi +

√
3

2
u

where ∥u∥ = 1 and u ⊥ vi. If j ∈ S(ϵ), then

⟨vj , r⟩ ≥ ϵ⇒
〈
−1

2
vi, r

〉
︸ ︷︷ ︸

≤−ϵ/2

+

〈√
3

2
u, r

〉
≥ ϵ⇒

〈√
3

2
u, r

〉
≥ 3ϵ

2
⇒ ⟨u, r⟩ ≥

√
3ϵ.

Since if u ⊥ v ∈ Rd, ⟨u, r⟩ and ⟨v, r⟩ are independent, so Pr(j ∈ S(ϵ) | i ∈ S(ϵ)) ≤ Φ(
√
3ϵ) as

desired. ■

We can now prove that the independent set found by Algorithm 5.4 is large.

Theorem 5.3.2. Algorithm 5.4 finds an independent set of size Ω(n · ∆−1/3 log−1/2 ∆) for any 3-
colorable G.

Proof. We see that

E [|S′(ϵ)|] =
∑
i∈V

Pr(i ∈ S(ϵ))︸ ︷︷ ︸
Φ(ϵ)

·Pr(i ∈ S′(ϵ) | i ∈ S(ϵ)) ≥
∑
i∈V

Φ(ϵ) ·
(
1−∆Φ(

√
3ϵ)
)
,

from Lemma 5.3.2. Now, observe the following.

Claim. If x ≥ 10, p(x)/2x ≤ Φ(x) ≤ p(x)/x.

Proof. Since we know that

x

1 + x2
· p(x) ≤ Φ(x) ≤ 1

x
· p(x)

for all x, if x ≥ 10, x/(1 + x2) ≥ 1/2x, hence we’re done. ⊛

With the above claim, we have Φ(ϵ) ≥ p(ϵ)/2ϵ with Φ(
√
3ϵ) ≤ p(

√
3ϵ)/3ϵ, hence

p(
√
3ϵ) =

1√
2π
e−3·(2/3·ln∆)/2 =

1√
2π
· 1
∆

and p(ϵ) =
1√
2π
e−2/3·ln∆/2 =

1√
2π

1

∆1/3
,

leading to

E [|S′(ϵ)|] ≥
∑
i∈V

(
1

2ϵ
· p(ϵ)

)
︸ ︷︷ ︸

≥Ω(1√
ln∆

1

∆1/3
)

·
(
1−∆ · 1

3ϵ
· p(
√
3ϵ)

)
︸ ︷︷ ︸

≥1/2

≥ Ω(n ·∆−1/3 ln−1/2 ∆).

■

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 69

Lecture 18: Graph Coloring via Independent Sets Decomposition

5.3.2 Independent Sets Decomposition
From Lemma 5.3.1, we can iteratively find large independent sets by Algorithm 5.4 as guaranteed by
Theorem 5.3.2. But before we see the final algorithm, we introduce a cute trick.

Remark (Wigderson’s trick). We can always 3-color {v} ∪ N (v) for all v ∈ V if G is 3-colorable.

Proof. Since for a 3-colorable graph, for all v ∈ V, G[N(v)] is bipartite (all u ∈ N(v) already links
with v, so the degree will be at most 2 in G[N (v)]). And as mentioned before, we can always 2-colors
a bipartite graph. And we just use another new color for v to do the 3-coloring. ⊛

Now, we see the final algorithm.
Algorithm 5.5: Graph Coloring – Independent Set Decomposition of 3-Colorable Graph
Data: A 3-colorable graph G = (V, E)
Result: A colored G

1 n0 ← |V|
2

3 // Phase 1

4 while ∆(G) ≥ n3/40 do
5 v ← argmaxi∈V deg(i)
6 3 colors {v} ∪N(v) // Wigderson’s trick
7 G ← G[V \ ({v} ∪N(v))]

8

9 // Phase 2

10 while ∆(G) ≥ 100 do // ∆(G) < n
3/4
0

11 S ←Independent-Set(G) // |S| ≥ cn∆−1/3 ln−1/2 ∆ from Theorem 5.3.2
12 1 colors S
13 G ← G[V \ S]
14

15 // Phase 3
16 ∆(G) + 1 colors G // ∆(G) < 100
17 return G

Notice that in Algorithm 5.5, whenever we do a coloring, we use a brand-new color to avoid any
collision.

Theorem 5.3.3. Algorithm 5.5 is an Õ(n1/4)-approximation algorithm for graph coloring.

Proof. We see that

• Phase 1: color at least n3/40 vertices with 3 colors in each iteration, hence need at most
n
1/4
0 (= 3 · n0/n3/4

0) colors.

• Phase 2: from Theorem 5.3.2, |S| ≥ ncn
−1/4
0 log−1/2 n0 =: nγ, then the induced graph will

have vertices less than n(1− γ).a Hence, we can run this at most k iteration since n ≥ 1, i.e.,

1 ≤ n ≤ n0(1− γ)k ≤ n0e−γk ⇒ k ≤ 1

γ
lnn0 =

1

c
n
1/4
0 log1/2 n0 · lnn0

• Phase 3: Clean-up phase, only uses constant amount (< 100) more colors.

In all, Algorithm 5.5 uses at most

3n
1/4
0 +

1

c
n
1/4
0 log3/2 n0 + 100 = Õ(n1/4)

colors. ■
aNotice the different between n and n0: n is updating, while n0 is the original graph size.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 70

Remark. We can use the similar approach for small constant c, e.g., c = 4, c = 5, etc.

CHAPTER 5. SEMIDEFINITE PROGRAMMING AND LASSERRE HIERARCHY 71

Chapter 6

Hardness of Approximation

Lecture 19: Complexity Theory for Approximation Algorithm
7 Nov. 10:30Recall how we define the combinatorial optimization.

As previously seen. Given a set of all possible inputs I for a combinatorial optimization problem
P , the goal is to find x ∈ XI to maximize/minimize fI(x) where fI : XI → R+ is an objective
function, and XI is a set of feasible solutions.

Now, we’re going to discuss the complexity of doing approximation problem. But since the classical
complexity theory is under the context of decision problems, we now try to generalize it.

6.1 Approximation Complexity
In this section, we’ll consider maximization problems primarily, however, the same definition can be
adapted to minimization problems naturally. First consider the decision problems: given a maximization
problem P with goal being finding an objective in R, we have the following decision version.

Definition 6.1.1 (Decision-P). Given a maximization problem P , the decision-P is the decision
version of P , where given an input I ∈ I, c ∈ R+, finds an algorithm which output True if
OPTI ≥ c, False otherwise.

And we have the following characterization of P and decision-P in terms of complexity class.

Definition 6.1.2. A maximization problem P is NP if decision-P is NP.

6.1.1 The Gap Problem
Adapting this to the approximation version, we have the following generalization.

Definition 6.1.3 (Gap). Given a maximization problem P with α ≤ 1, the α-Gap P is the decision
version of α-approximating P , where given an input I ∈ I and c ∈ R+, finds an algorithm which
outputs True if OPTI ≥ c, False if OPTI < αc, and anything else (don’t care) otherwise.

Intuition. Since we allow some approximation, we don’t care about the “gap”, i.e., OPTI ∈ [αc, c) .

Since we see that we may ignore some outputs, we divide the output into two different sets.

Notation. Let I be a set of all inputs, Y be a set of all True inputs, N be a set of all False inputs.a
Then given an input I ∈ I, output True if I ∈ Y , False if I ∈ N , anything otherwise.

aWe have Y ∩N = ∅, while not necessarily have N ∪ Y = I.

72

Lecture 19: Complexity Theory for Approximation Algorithm

Remark. If there is an α-approximation algorithm for P , then there is an algorithm for α-Gap P .

Proof. Given I and c, we run the α-approximation algorithm for P to get a solution with value c′.
Notice that we necessarily have

αOPTI ≤ c′ ≤ OPTI ,

hence we can design a new algorithm which outputs True if c′ ≥ c · α, False otherwise. This is a
correct algorithm for α-Gap P since

• If OPTI ≥ c, then c′ ≥ αOPTI ≥ αc, which is the True case.

• If OPTI < αc, then c′ ≤ OPTI < αc, which is the False case.

Conversely, it there is no polynomial time algorithm for α-Gap P , there is no α-approximation
algorithm for P . ⊛

Again, we have the following characterization of P and α-Gap P in terms of complexity class.

Definition 6.1.4. An α-approximating problem P is NP if the α-Gap P is NP.

6.1.2 Approximation Reduction
Finally, we briefly review the classical reduction for decision problem.

As previously seen (Reduction). Given two problems P1, P2, a reduction from P1 to P2 is a polyno-
mial time algorithm R such that given an input I1 ∈ L1, output I2 ∈ L2 satisfying both completeness
and soundness.

As previously seen (Completeness). A reduction from P1 to P2 satisfies completeness if it
transforms an accepted input for P1 to an accepted input for P2, i.e., if I1 ∈ Y1, then I2 ∈ Y2.

As previously seen (Soundness). A reduction from P1 to P2 satisfies soundness if it transforms
a rejected input for P1 to a rejected input for P2, i.e., if I1 ∈ N1, then I2 ∈ N2.

The reason why we care about reduction is that given a reduction R from P1 to P2, if there exists an
algorithm for P2, then we have an algorithm for P1. by the following.
Algorithm 6.1: Reduction
Data: Algorithm A2 for P2, reduction R from P1 to P2, input I1 ∈ L1 for P1

Result: Decision of I1
1 I2 ←R(I2)
2 return A2(I2)

Similarly, since we care about approximation algorithm, we can define the approximation version of
the reduction from α-Gap P1 to β-Gap P2 as follows.

Definition 6.1.5 (Reduction). Given two maximization problems P1, P2, a reduction from α-Gap
P1 to β-Gap P2 is a polynomial time algorithm R such that given an input I1 ∈ L1 and c1, output
I2 ∈ L2 and c2 satisfying both completeness and soundness.

Definition 6.1.6 (Completeness). A reduction from P1 to P2 satisfies completeness if it trans-
forms an accepted input for P1 to an accepted input for P2, i.e., if OPTI1 ≥ c1, then OPTI2 ≥ c2.

Definition 6.1.7 (Soundness). A reduction from P1 to P2 satisfies soundness if it transforms a
rejected input for P1 to a rejected input for P2, i.e., if OPTI1 < αc1, then OPTI2 < βc2.

CHAPTER 6. HARDNESS OF APPROXIMATION 73

Lecture 19: Complexity Theory for Approximation Algorithm

Remark. The term completeness and soundness comes from logic.

Proof. More intuitively, for a proof system, completeness states that every true statement has a
proof, while soundness states that every false statement can’t have a proof, i.e., we can’t prove
anything that is wrong. ⊛

And again, given a reduction R if there is a polynomial time algorithm for β-Gap P2, then we have
a polynomial time algorithm for α-Gap P1; on the other hand, if there is no polynomial time algorithm
for α-Gap P1, then there is no polynomial time algorithm for β-Gap P2, so there is no β-approximation
algorithm for P2.

6.2 Probabilistically Checkable Proofs

6.2.1 Constraint Satisfaction Problem
We first study one of the most important problems in theoretical computer science, the CSP problem.
This is important since it’s the reduction for many important problems, and form the discussion, if we
have a good algorithm for CSP, we automatically get lots of other problems solved.

Problem 6.2.1 (CSP). Given an input (x1, . . . , xn) = X, C1, . . . , Cm where Ci = (ai, bi1 , . . . , bik)
be the set of clauses where ai ∈ ℓ, bij ∈ [n], the constraint satisfaction problem of Σ,Φa is to find
σ : X → Σ maximizing the number of satisfied clauses, i.e., σai

(xb1 , . . . , xbk) = 1.

aΣ is the alphabet set and Φ = {ϕ1, . . . , ϕℓ} is a family of constraints where ϕi : Σ
k → {0, 1}.

There’s an important distinction between problem description and problem instance. That is, the
CSP with respect to Σ,Φ is the problem description of a class of problems, and after given some variables
X and clauses Ci, it becomes a problem instance, which can be solved.

Notation (Problem description). The problem description of CSP with respect to Σ and Φ is denoted
as CSP(Σ,Φ).

Notice that we can equivalently maximize the fraction instead of maximize the number of satisfied
clauses, i.e., the objective is now #satisfied clauses/m. It’s because it’s convenient to normalize the
objective to be in [0, 1].

Note. Notice that to represent ϕi : Σk → {0, 1}, it’s often more convenient just to denote it as
ϕ−1
i ({1}), i.e., the set of accepted string in Σk w.r.t. ϕi.

Example (Max-cut as CSP). Max cut is equivalent to CSP(Σ,Φ) where Σ = {0, 1}, Φ = {ϕ1} with
ϕ1 = {01, 10}.

Proof. If we model max cut in this way, given an instance of max cut, i.e., given a graph G = (V, E)
with n nodes, Ci = (1, u, v) for (u, v) ∈ E . The first entry is 1 since there are only one constraint to
check whether a node is in the cut or not, and we create Ci for every edge (u, v). ⊛

Example (Max-2SAT as CSP). MAX-2SAT is equivalent to CSP(Σ,Φ) where Σ = {0, 1}, Φ =
{ϕ1, . . . , ϕ4} with

ϕ1 = {01, 10, 11} ⇔ (xi ∨ xj), ϕ2 = {01, 10, 00} ⇔ (xi ∨ xj),
ϕ3 = {01, 00, 11} ⇔ (xi ∨ xj), ϕ4 = {00, 10, 11} ⇔ (xi ∨ xj).

6.2.2 The Probabilistic Checkable Proofs Theorem
As mentioned, there’s lots of reduction can be done between fundamental problems considered in TCS
to CSP, including one of the most important results in hardness, the PCP theorem. In order to do this,

CHAPTER 6. HARDNESS OF APPROXIMATION 74

Lecture 20: FGLSS Graph

we need a more fine-grained version of Definition 6.1.3.

Definition 6.2.1 ((c, s)-Gap). Given a maximization problem P with 0 < s ≤ c ≤ 1, the (c, s)-Gap
P is the decision version of α-approximating P , where given an input I ∈ I and c ∈ R+, finds
an algorithm which outputs True if OPTI ≥ c, False if OPTI < s, and anything else (don’t care)
otherwise.

Note. We implicitly assume that (c, s)-Gap P is only defined for P being a CSP, or can be reduced
to CSP.

Remark. We see that by setting s = α · c, we recover Definition 6.1.3 from Definition 6.2.1.

Then, we have the following.

Theorem 6.2.1 (Cook-Levin theorem [Coo71]). The (1, 1)-Gap 3SAT is NP-hard.

Theorem 6.2.2 (Karp [Kar72]). For all fixed ϵ > 0, (1− ϵ, 1− ϵ)-Gap max cut is NP-hard.

Note. The (1, 1)-Gap max cut is P.

Proof. Recall that if we transform max cut into CSP, the optimal value is always 1,a i.e., every
edge is cut edge, so in this case the graph must be bipartite. This can be easily check. ⊛

ai.e., we’re not comparing to the optimal value of one instance of G.

Theorem 6.2.3 (PCP theorem [Fei+91; Aro+98]). There exists an ϵ > 0 such that (1, 1 − ϵ)-Gap
3SAT is NP-hard.

To understand , we need to understand the class PCP. First, recall the definition of NP.

As previously seen (NP). A language L ⊆ {0, 1}∗ is in NP if there exists a Turing machine V runs
in poly(|x|) such that given x,

• x ∈ L, then ∃y such that V (x, y) = 1;

• x /∈ L, then ∀y such that V (x, y) = 0.

Definition 6.2.2 (PCP). The class probabilistically checkable proofs, or PCPc,s(r(n), q(n)),a is defined
as L ∈ PCPc,s(r, q) if there exists a poly-time randomized Turing machine V which can only flip r
coinsb and given an input x, V can look at x on q position Q1, . . . , Qq by ϕR : {0, 1}q → [0, 1] where

• x ∈ L, then ∃y such that PrR(ϕ(yQ1 , . . . , yQq) = 1) ≥ c;

• x /∈ L, then ∀y such that PrR(ϕ(yQ1
, . . . , yQq

) = 1) < s.

aWe implicitly assume that r and q depends on the length of the input |x| = n.
bIt only accepts random string R with length r, i.e., is R ∈ {0, 1}r.

In Definition 6.2.2, the randomized Turing machine V decides both the position (Q1, . . . , Qq) we’re
allowed to access, and also a function ϕR which only looks at xQ1 , . . . , xQq , acting as a decider for V .

Note. Everything is decided before looking at any input.

Just like Cook-Levin theorem is the mother of all exact hardness, PCP theorem is the mother of all
hardness of approximation.

CHAPTER 6. HARDNESS OF APPROXIMATION 75

thm:PCP

Lecture 20: FGLSS Graph

Lecture 20: FGLSS Graph
9 Nov. 10:30With Definition 6.2.2, PCP theorem is equivalent to saying the following.

Theorem 6.2.4. The PCP theorem is equivalent as saying that there exists ϵ > 0 such that

NP = PCP1,1−ϵ(O(log n), O(1)).

Proof. It’s easy to see that NP ⊇ PCP1,1−ϵ(O(log n), O(1)) just by considering iterating through
all the possible R. Another direction worth a whole class, so we’re not going to dive into that. ■

Nevertheless, if we accept that NP = PCP1,1−ϵ(O(log n), O(1)), we can actually show the equiva-
lence between Theorem 6.2.4 and the PCP theorem by showing that Theorem 6.2.4 implies hardness of
approximation, specifically, the (1, 1− ϵ)-Gap 3SAT problem.

Firstly, from Cook-Levin theorem, 3SAT is NP = PCP1,1−ϵ(O(log n), O(1)) from assumption. But
instead of demonstrate the reduction to 3SAT, we consider max cut instead.

Remark. Generally, between two Gap CSPs with (c1, s1) and (c2, s2), the hardness is preserve, so
we may consider max cut instead since it can be modeled as CSP, and use the machinery to show
the hardness for 3SAT.a

aFor more detailed explanation, see Piazza.

Assume q = 2, ψ = {01, 10}, and r = O(log n). Then there exists V such that given a 3-CNF formula
ϕ, it runs in poly(|ϕ|) and only flips r random coins R ∈ {0, 1}r, which decides QR

1 , Q
R
2 such that

• if ϕ is satisfiable, ∃y such that PrR(ψ(yQR
1
, yQR

2
) = 1) ≥ c;

• if ϕ is not satisfiable, ∀y such that PrR(ψ(yQR
1
, yQR

2
) = 1) ≤ s.

Notice that the above event ψ(yQR
1
, yQR

2
) is exactly yQR

1
̸= yQR

2
. We see that there are at most 2r ≤ nO(1)

possible R’s, and for each R, we access exactly 2 positions, so V will access at most N := 2 ·2r positions.
Now, without loss of generality, we may assume that maxR(Q

R
1 , Q

R
2) ≤ N .1

Consider the optimization problem that finds y ∈ {0, 1}N to maximize the probability of accepting.
In this viewpoint, this is just like max cut on G = ([N],

{
(QR

1 , Q
R
2) : R ∈ {0, 1}

r}
). Namely, we find a

reduction from 3SAT to (c, s)-Gap max cut.

6.3 FGLSS Graph
To see how we utilize PCP theorem, we first see one example.

Problem 6.3.1 (Vertex cover). Given a graph G = (V, E), find the smallest C ⊆ V that covers all E .

Problem 6.3.2 (Independent set). Given a graph G = (V, E), find the largest I ⊆ V that contains no
edge.

Problem 6.3.1 and Problem 6.3.2 are often considered together due to the following relation.

Claim. For all G, OPTVC(G) = |V| − OPTIS(G).

Proof. Observe that for all C ⊆ V, C is a vertex cover if and only if V \C is an independent set. ⊛

6.3.1 Hardness of Vertex Cover and Independent Set
The hardness of vertex cover and independent set can be shown by using the FGLSS graph [Fei+96],
which allows us to do reduction from (1, s)-Gap 3SAT with s < 1, which is NP-hard from the PCP
theorem.

1Since V is going to access at most N positions anyway, we can just rearrange it.

CHAPTER 6. HARDNESS OF APPROXIMATION 76

https://piazza.com/class/l79tk1phe7k6h1/post/45

Lecture 20: FGLSS Graph

Consider the input of the (1, s)-Gap 3SAT being a 3CNF formula ϕ, n variables X = {x1, . . . , xn}
and 2n literals L = {x1, x1, x2, x2, . . . } with m clauses {C1, . . . , Cm} with three literals in each, i.e.,
Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3) with ℓij ∈ L.

Then, the goal is to find a reduction from this input to an input (in both cases, it’s a graph) of α-
Gap vertex cover and β-Gap independent set for some α, β. Toward this goal, we consider the so-called
FGLSS graph [Fei+96] G = (V, E) such that

• V = [m]×
(
{T,F}3 \ (F,F,F)

)
with |V| = 7m;

•
(
(i, ℓi1 , ℓi2 , ℓi3), (j, ℓj1 , ℓj2 , ℓj3)

)
∈ E if they contradict.

The interpretation is that each vertex (i, t1, t2, t3) indicates value of (ℓi1 , ℓi2 , ℓi3), i.e., it’s a partial
assignment for only 3 variables in Ci.

Notation (Contradiction). If the partial assignment given by two vertices in a FGLSS graph is not
consistent, we say they are contradicting.

Example. Given C1 = (x1 ∨ x2 ∨ x3) and C2 = (x3 ∨ x4 ∨ x5) with two vertices v = (1,T,T,T) and
u = (2,T,F,F), they are contradicting to each other.

Proof. Since v states that x3 is T (x3 is F); while u states that x3 is T, they contradict. ⊛

This actually finishes the reduction, and the only thing left to do is to determine what α and β is.
To do this, observe that following.

Remark. Denote Vi := {i} ×
(
{T,F}3 \ (F,F,F)

)
, we see that Vi is a clique with size 7 since they

all contradict to each other.

This means that for independent set, c = m; and for vertex cover, c = |V| −m = 7m−m = 6m. We
first show the completeness.

Claim. If OPT3SAT(ϕ) = 1, then OPTIS(G) ≥ m and OPTVC(G) ≤ 6m.

Proof. Since ϕ is satisfiable, then there exists σ : X → {T,F} that satisfies every Ci. Then from
each Vi, choose a vertex consistent with σ.a

And since they come from the same assignment σ, there are no contradiction hence no edges
between these vertices, i.e., they form a independent set. Hence, OPTIS(G) ≥ m, and OPTVC(G) ≤
6m. ⊛

aThere are exactly one for each i.

We now show the soundness. In particular, we will always deal with contrapositive in this course, i.e.,
instead of find a bad input from a bad input, we find a good input from a good input, but backwards.

Claim. If OPT3SAT(ϕ) < s, then OPTIS(G) < sm and OPTVC(G) > (7− s)m.

Proof. Consider the contrapositive, i.e., we show that OPTIS(G) ≥ sm (hence OPTVC(G) ≤ (7 −
s)m), then OPT3SAT(ϕ) ≥ s.

Let I ⊆ V be an independent set such that |I| ≥ sm, and let σ : X → {T,F} such that for all
Ci with |I ∩ Vi| = 1,a assign variables in Ci according to I ∩ Vi.b Finally, we extend it arbitrarily
for unassigned variables if needed. We see that for all Ci such that |I ∩ Vi| = 1, this assignment
σ satisfies Ci, hence σ satisfies exactly |I| ≥ sm clauses, i.e., the normalized optimal solution for
3SAT is ≥ sm/m = s as required. ⊛

aIt can only be the case that I doesn’t include vertices from some Vi, but if it does, no more than 1 can be included
since Vi is a clique.

bThis is well-defined since there are no contradictions with I being an independent set.

With the above discussion, we see that the Gap is β = s < 1, α = (7− s)/6 > 1. Hence, there exists
a reduction from (1, s)-Gap SAT to (7− s)/6-Gap vertex cover and s-Gap independent set.

CHAPTER 6. HARDNESS OF APPROXIMATION 77

Lecture 20: FGLSS Graph

Remark. Actually, it’s also easy to check that there exists a reduction from (c, s)-Gap P to (f −
s)/(f − c)-Gap vertex cover and s/c-Gap independent set for any CSP P with f being the number
of satisfying assignments.

From this, we have the following.

Theorem 6.3.1. For all ϵ > 0, there exists a CSP P such that (1, ϵ)-Gap P is NP-hard.

Corollary 6.3.1. For all c > 0, there exists no c-approximation algorithm for independent set.

The state-of-the-art in-approximation result for independent set result is the following.

Theorem 6.3.2. For all ϵ > 0, there exists no 1/n1−ϵ-approximation algorithm for independent set.

6.4 Label Cover
Although PCP theorem is powerful as we just saw, but there is also another useful problem to study
when doing reduction, the label cover.

Problem 6.4.1 (Label cover). Given a d-regular bipartite graph G = (U ⊔ V, E) with |U | = |V | = n,
with label sets L (for U) and R (for V) with |R| ≥ |L| such that for all e = (u, v) ∈ E , we have a
projection Πe : [R]→ [L]. The label cover problem asks for an assignment σ : U ⊔ V → L ∪R such
that

σ|U : U → L, σ|V : V → R,

maximizes the number of satisfied edge.a

aThe edge e = (u, v) is satisfied by σ if Πe(σ(v)) = σ(u).

Note. Notice that d-regularity directly implies that |U | = |V |.

(mod 3)

(mod 2)

VU

1

4

5

R = Z6L = Z3

For label cover, the parameters are |U |, |V |, |E|, L,R, and we sometimes for simplicity, use L and R
to also denote the size of L and R.

Remark (Baseline). There is a trivial 1/L-approximation algorithm.

Proof. Consider a random assignment σ such that

• for all v ∈ V , σ(v) randomly from [R];

• for all u ∈ U , σ(u) randomly from [L].

Fix e = (u, v), we see that Pr(Πe(σ(v)) = σ(u)) = 1/L. ⊛

Theorem 6.4.1. For all ϵ > 0, there exists L,R such that the (1, ϵ)-Gap label cover for L,R is
NP-hard.

Proof. This is based on the PCP theorem with parallel repetition theorem. ■

CHAPTER 6. HARDNESS OF APPROXIMATION 78

https://www.wisdom.weizmann.ac.il/~/ranraz/publications/Pparrepsur.pdf

Lecture 21: Reduction to Max k-Coverage

6.4.1 Hardness of Max k-Coverage
Recall the max k-coverage problem.

Problem 6.4.2 (Max k-coverage). Given a set system (Ω,S) and k, finds S ′ ⊆ S such that |S|′ = k
which maximizes |

⋃
S∈S′ S|/|Ω|.

We’re going to see the hardness of the max k-coverage problem, and our goal is to prove the following.

Theorem 6.4.2. For all ϵ > 0, there is no (3/4 + ϵ)-approximation algorithm for max k-coverage.

Interestingly, the state-of-the-art result is the following.

Theorem 6.4.3. For all ϵ > 0, there is no (1−1/e+ϵ)-approximation algorithm for max k-coverage.

By proving Theorem 6.4.2, we almost prove Theorem 6.4.3!

Lecture 21: Reduction to Max k-Coverage
14 Nov. 10:30We now see the reduction from (1, ϵ0)-Gap label cover to (1, 3/4 + ϵ)-Gap max k-coverage and use

Theorem 6.4.1 to prove Theorem 6.4.2. Specifically, we’ll show that ϵ0 = ϵ3/2000. Given a label cover
instance G = (U ⊔ V, E), L,R and {Πe}e∈E , consider

Ω := E × {0, 1}L

such that (e, x1, . . . , xL) ∈ Ω with |Ω| = |E| · 2L. Then, the reduction is given by

• For all u ∈ U , i ∈ [L], Su,i = {(e, x1, . . . , xL) : e ∋ u, xi = 0}.

• For all v ∈ V , i ∈ [R], Sv,i =
{
(e, x1, . . . , xL) : e ∋ v, xΠe(i) = 1

}
.

• k = 2n = |U |+ |V |.

VU

u

Su,1

Figure 6.1: u and Su,1.

We first show the completeness, where we want to show that if OPTM-k-C = 1, then OPTLC = 1. Given
an accepted (perfect) instance of label cover, there exists σ such that for all e = (u, v), σ(u) = Πe(σ(v)).
Then, we construct

S ′ :=
{
Su,σ(u)

}
u∈U
∪
{
Sv,σ(v)

}
v∈V

.

Indeed, S ′ covers every element in Ω since for all (e, x) ∈ Ω,{
(e, x) = ((u, v), x) ∈ Su,σ(u), if xσ(u) = 0;

(e, x) = ((u, v), x) ∈ Sv,σ(v), if xσ(u) = 1,

where the later one is from Πe(σ(v)) = σ(u).
To prove soundness, we consider the contrapositive, namely if OPTM-k-C ≥ (3/4+ ϵ), then OPTLC ≥

ϵ0. To start with, assume that there exists S ′ such that |S ′| = k = 2n which covers at least (3/4 + ϵ)
fraction of Ω.

CHAPTER 6. HARDNESS OF APPROXIMATION 79

Lecture 21: Reduction to Max k-Coverage

(a) Suppose for all u ∈ U , |S ′∩{Su,i : i ∈ [L]} | = 1 and for all v ∈ V , |S ′∩{Sv,i : i ∈ [R]} | = 1.2 Then
we let σ be the labeling which is consistent with S ′. This is indeed a good solution since for every
e = (u, v) ∈ E , Su,σ(u) and Sv,σ(v) cover{

1, if Πe(σ(v)) = σ(u);

3/4, otherwise

fraction of Ce, where Ce is the hypercube corresponding to e.3 This is because if (e, x) is not
covered, then xσ(u) = 1 and xΠe(σ(v)) = 0, which is exactly 1/4 of Ce. Hence,

a︷ ︸︸ ︷
fraction of elements satisfied by σ ·1 +

1−a︷ ︸︸ ︷
fraction of elements unsatisfied by σ ·3

4︸ ︷︷ ︸
fraction of elements covered by S′

≥ 3

4
+ ϵ

from the assumption. Then, a+ (1− a) · 3/4 ≥ 3/4 + ϵ, which implies a ≥ 4ϵ ≥ ϵ3/2000.

Problem. Compared to this warm-up case, S ′ can have many sets from some u, v and none
from others.

(b) For all u ∈ U , let ℓ(u) := {i ∈ L : Su,i ∈ S ′}, and for all v ∈ V , let ℓ(v) := {i ∈ R : Sv,i ∈ S ′}. Then,

Ev∈U⊔V [|ℓ(v)|] = 1

since there are k = 2n labels, and we have exactly k = 2n sets in S. Hence, since |E| = nd from
d-regularity,

Ee=(u,v)∈E [|ℓ(u)|+ |ℓ(v)|] =
1

nd

∑
e=(u,v)∈E

[|ℓ(u)|+ |ℓ(v)|]

=
1

nd
· d

(∑
u∈V

|ℓ(u)|+
∑
v∈V

|ℓ(v)|

)
= 2

Intuition. We see that in expectation, this general case is same as the first warm-up case.

Now, to construct a label cover σ, we define for all u, σ(u) be a random element from ℓ(u), and
nothing if ℓ(u) = ∅. We say e = (u, v) is consistent if Prσ(e is satisfied) > 0, which is equivalent
to say ℓ(u) ∩Πe(ℓ(v)) ̸= ∅.

Claim. If e is not consistent, then S ′ covers

1− 2−(|ℓ(u)|+|Π(ℓ(v))|) ≤ 1− 2−(|ℓ(u)|+|ℓ(v)|)

fraction of Ce.

Proof. Without loss of generality, let ℓ(u) = {1, . . . , a}, and Π(ℓ(v)) = {a+ 1, . . . , a+ b}.
Then for x ∈ {0, 1}L, (e, x) is covered if and only if xi = 0 for some i ∈ {1, . . . , a} and xj = 1
for some j ∈ {a+ 1, . . . , a+ b}. Hence, exactly 1 − 2−(a+b) fraction of elements in Ce are
covered. ⊛

Finally, we say e = (u, v) is frugal if |ℓ(u)|+ |ℓ(v)| ≤ 10/ϵ, and is good if e is both consistent and
frugal. Then, we see that

Pr(e is satisfied) ≥ ϵ2

100
.

Then if ϵ/20 fraction of edges is good, then the fraction of satisfied edges is larger than

ϵ

20
· ϵ

2

100
=

ϵ3

2000
= ϵ0.

So, now we just need to show that there are actually ϵ/20 fraction of edges is good.
2This case is a warm-up case such that one vertex can only choose one set.
3I.e., Ce :=

{
x ∈ {0, 1}L : (e, x) ∈ Ω

}
.

CHAPTER 6. HARDNESS OF APPROXIMATION 80

Claim. At least ϵ/20 fraction of edges is good.

Proof. Assume otherwise. Then

Pr
e
(e is consistent) = Pr(e is good) + Pr(e is consistent but not frugal)

≤ Pr(e is good)︸ ︷︷ ︸
≤ϵ/20

+Pr(e is not frugal)︸ ︷︷ ︸
≤2ϵ/10

≤ ϵ

4
,

where the bound follows from the Markov inequality.a Finally, we see that

2 = Ee=(u,v) [|ℓ(u)|+ |ℓ(v)|]
= Pr(e is consistent) · E [|ℓ(u)|+ |ℓ(v)| | e is consistent]

+ Pr(e is not consistent) · E [|ℓ(u)|+ |ℓ(v)| | e is not consistent]

=: Pr(e is consistent) · a+ Pr(e is not consistent) · b.

Since a ≥ 2 from the fact that for e being consistent, we need at least two labels, so b ≤ 2
since the overall expectation is 2. Now, define re to be

re =

∣∣⋃
S∈S′(S ∩ Ce)

∣∣
|Ce|

,

i.e., the fraction of elements in Ce covered by S ′. Then,

Ee=(u,v) [re | e is not consistent] ≤ Ee=(u,v)

[
1− 2−|ℓ(u)|+|ℓ(v)| | e is not consistent

]
≤ 1− 2−Ee=(u,v)[|ℓ(u)|+|ℓ(v)||e is not consistent] ≤ 1− 22 =

3

4
,

from the Jensen’s inequality since −2−x is a concave function. Hence,

Ee∈E [re] = Ee∈E [re | e is consistent] · Pr(e is consistent)

+ Ee∈E [re | e is not consistent] · Pr(e is not consistent) ≤ ϵ

4
+

3

4
<

3

4
+ ϵ,

which is contradiction since we assume S ′ covers at least 3/4 + ϵ fraction of elements. ⊛

aIf not true, then Ee [|ℓ(u)|+ |ℓ(v)|] > 2ϵ/10 · 10/ϵ ≥ 2, which contradicts to what we have shown.

In all, we see that Theorem 6.4.2 is proved with Theorem 6.4.1 since we have a valid reduction.

CHAPTER 6. HARDNESS OF APPROXIMATION 81

https://en.wikipedia.org/wiki/Jensen's_inequality

Chapter 7

Unique Games and the Conjecture

Lecture 22: 3LIN and BLR Test
16 Nov. 10:30In this section, we’re going to study a special problem of label cover, called the unique games. As we have

already seen, the hardness of label cover already implies the hardness of problems like max k-coverage,
as shown in Theorem 6.4.2.

In particular, if we assume a hardness conjecture called unique game conjecture, we can show the
optimal hardness for 3LIN, 3SAT, and max cut. Let’s first consider the first two.

7.1 Optimal Hardness for 3LIN and 3SAT
Let consider the following problem.

Problem 7.1.1 (MAX-3LIN). Given X := {x1, . . . , xn}, Σ = F2, and a set of m equations in the
form of xi + xj + xk = 0 or 1. The problem MAX-3LIN asks to find σ : X → F2 that maximizes
the fraction of the satisfied equations.

Remark. We often call MAX-3LIN as 3LIN for brevity.

We’re going to show the hardness of 3LIN, but first, note the following.

Claim. (1, 1)-Gap 3LIN can be solved in polynomial time.

Proof. Consider solving 
1 0 . . . 1 1
1 1 . . . 0 1
...

...
. . .

...
...

1 0 . . . 0 0


m×n


x1
x2
...
xn


n×1

=


b1
b2
...
bm


m×1

,

where the coefficient matrix has only three non-zero entries for each row. Then, if this is an accepted
instance, this system of equations has a solution, and we can check this just by Gaussian elimination
over F2. ⊛

But what if the instance has OPT = 1− ϵ for some small ϵ > 0? In this case, this question is actually
hard.

Remark. A trivial approximation for 3LIN is just to do a random assignment, which gives us a
1/2-approximation.

The hardness result of 3LIN we’re going see is the following.

82

Lecture 22: 3LIN and BLR Test

Theorem 7.1.1 ([Hås97]). For every constant ϵ > 0, the (1− ϵ, 1/2 + ϵ)-Gap 3LIN is NP-hard.

Which implies the following.

Corollary 7.1.1. For every constant ϵ > 0, the (1− ϵ, 7/8 + ϵ)-Gap 3SAT is NP-hard.

Proof. Given 3LIN instance, we create an 3SAT instance

(xi + xj + xk = 0)⇒


(xi ∨ xj ∨ xk);
(xi ∨ xj ∨ xk);
(xi ∨ xj ∨ xk);
(xi ∨ xj ∨ xk);

, (xi + xj + xk = 1)⇒


(xi ∨ xj ∨ xk);
(xi ∨ xj ∨ xk);
(xi ∨ xj ∨ xk);
(xi ∨ xj ∨ xk).

We see that

• a 3LIN equation is satisfied ⇔ 4 corresponding 3SAT clauses are satisfied;

• a 3LIN equation is unsatisfied ⇔ 3 corresponding 3SAT clauses are satisfied.

So,

OPT3SAT = OPT3LIN ·
4

4
+ (1− OPT3LIN) ·

3

4
=

3

4
+

1

4
· OPT3LIN,

and hence the (1−ϵ, 1/2+ϵ)-Gap hardness for 3LIN from Theorem 7.1.1 implies the (1−ϵ, 7/8+ϵ)-
Gap hardness for 3SAT. ■

Remark. Actually, with more work, (1, 7/8 + ϵ)-Gap 3SAT is also NP-hard.

Note. Recall that a random assignment (such as Algorithm A.1) of 3SAT satisfies 7/8 fraction of
clauses from Lemma A.1.1. This suggests that both 3SAT and 3LIN is hard: we can’t do better
than random assignment.

So, we will embark a long journey to prove Theorem 7.1.1 from label cover, i.e., we again want to
find a good assignment σ : U ⊔ V → L ⊔R by using the hypercube construction. To do this, we need to
study Fourier analysis over {±1}n of a boolean function.

7.2 Fourier Analysis of Boolean Functions
We now introduce a powerful tool which is well-known in engineering, Fourier analysis. While it’s pow-
erful for infinite-domain function classes, it’s not that well-known in the class of finite-domain functions.
However, in the latter case, it turns out to be still powerful.

7.2.1 Boolean Functions and Boolean-Valued Functions
Firstly, we introduce the boolean function.

Definition. Let F2 be the additive group over F2 = {0, 1} and consider the conical isomorphism to
the multiplicative group {±1}.

Definition 7.2.1 (Boolean funciton). A function f is a boolean function if f : {±1}n → R.

Definition 7.2.2 (Boolean-valued). If the range of a boolean function f is {±1}, we say f is a
boolean-valued function.

Note. Since the domain of a boolean function has cardinality 2n, we can identify it as a 2n-
dimensional vector.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 83

Lecture 22: 3LIN and BLR Test

Consider viewing the set of boolean functions as a Hilbert space, we then define the following inner
product between f, g as

⟨f, g⟩ = 1

2n

∑
x∈{±1}n

f(x)g(x) =: Ex [f(x)g(x)] .

Note. We have ∥f∥22 = ⟨f, f⟩ = Ex

[
f(x)2

]
.

Now, we want to know what are the orthonormal basis for the set of boolean functions. There are
two important examples:

(a) Standard basis: For all x ∈ {±1}n,

fx : {±1}n → R, fx(y) =

{
2n/2, if x = y;

0, otherwise.

We see that {fx}x∈{±1}n is an orthonormal basis since for all x, ∥fx∥22 = 1 and ⟨fx, fy⟩ = 0 for all
x ̸= y.

(b) Fourier basis: For all S ⊆ [n], define χ∅(x) := 1 and

χS : {±1}n → {±1} , χS(x) =
∏
i∈S

xi =: x
S .

We see that {χS}S⊆[n] is an orthonormal basis since Ex

[
χS(x)

2
]
= 1, and

⟨χS , χT ⟩ = Ex [χS(x)χT (x)] = Ex

[
xSxT

]
= Ex

[
xS∆T

]
=

{
0, if S ̸= T ;

1, if S = T.

7.2.2 Fourier Analysis over Boolean Functions
We’ll study the Fourier basis primarily. Firstly, we have the following decomposition of f : {±1}n → R
as

f =
∑
S⊆[n]

f̂(S)χS ,

where we call f̂(S) the Fourier coefficient. Now, here is some basic facts and theorem.

Proposition 7.2.1. Given an orthonormal basis {χS}S⊆[n] of the space of boolean functions, then
f̂(S) = ⟨f, χS⟩.

Proof. Since ⟨f, χS⟩ =
〈∑

T⊆[n] f̂(T)χT , χS

〉
=
∑

T f̂(T) ⟨χT , χS⟩ = f̂(S). ■

Theorem 7.2.1 (Plancherel’s theorem). Given two boolean functions f, g, we have

⟨f, g⟩ = Ex [f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

Proof. Since ⟨f, g⟩ =
〈∑

S f̂(S)χS ,
∑

T f̂(T)χT

〉
=
∑

S,T f̂(S)ĝ(T) ⟨χS , χT ⟩ =
∑

S f̂(S)ĝ(S). ■

Theorem 7.2.2 (Parseval’s theorem). Given a boolean function f , ∥f∥22 =
∑

S⊆[n] f̂(S)
2.

Proof. This directly follows from Plancherel’s theorem with ∥f∥22 = ⟨f, f⟩. ■

Claim. Given a boolean function f , Ex [f(x)] = f̂(∅).

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 84

Lecture 23: Noisy BLR Test and Unique Games Conjecture

Proof. Since Ex [f(x)] = Ex [f(x) · 1] = Ex [χ∅(x)f(x)] = ⟨χ∅, f⟩ = f̂(∅). ⊛

Claim. Given a boolean function f , Var [f] =
∑

S ̸=∅ f̂(S)
2.

Proof. Since Var [f] = Ex

[
f2
]
− (Ex [f])

2
=
∑

S⊆[n] f̂(S)
2 − f̂(∅)2 =

∑
S ̸=∅ f̂(S)

2. ⊛

7.3 BLR Test and the Noisy BLR Test
Our goal is to show the reduction from label cover to 3LIN by designing a 3LIN instance on variables
U×{±1}L identified by hypercube. Compared to the max k-coverage, now the hypercubes are variables.

u

v

w

{0, 1}L

{0, 1}L

Max k-Coverage

u

v

w

{0, 1}L
{0, 1}R

Max 3LIN

{0, 1}R

for each hypercube, how it is covered
is determined by σ(u), σ(v)

for each hypercube, how it is assigned
is determined by σ(u)

Ideally, (u, x) gets xσ(u), which is just a particular base of the Fourier basis called dictation.

Definition 7.3.1 (Dictation). The dictation function of i is defined as χi(x) := χ{i}(x) = xi.

For convenience, we sometimes call a dictation function as dictator for short.

Intuition. Consider assignment α : {variables of 3LIN} = U × {±1}L → {±1}, then fix u ∈ U ,
and let f : {±1}L → {±1} given by f(x) = α(u, x). Ideally, f(x) = χσ(u), which means f ∈
{χ1, . . . , χL}.

Problem. But since the number of possible f ’s is 22
L

, how can we force f to be in {χi}Li=1, or even
{χS}S⊆[L]?

Answer. We can design a 3LIN instance on variables {±1}n such that if the assignment f : {±1}n →
{±1} is close to some χS , obj(f)a is large; if it is far from any χS , then obj(f) is small. ⊛

aThe obj(f) is the fraction of equations satisfied by f .

Lecture 23: Noisy BLR Test and Unique Games Conjecture
21 Nov. 10:307.3.1 BLR Test

To do this, we consider creating a weighted 3LIN instance.

(a) Each equation has weight.

(b) Weights sum to 1.

(c) obj(f) =
∑

Ci is satisfied w(Ci).

In this way, we can interpret one instance as the probability distribution over equations. Rather than
construct the equation directly, we can specify how we are going to sample equations via specifying a
probability distribution!

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 85

Lecture 23: Noisy BLR Test and Unique Games Conjecture

Remark. Mathematically, given a distribution P on {xi · xj · xk = b}, we have

w(wi · wj · wk = b) = Pr
P
(xi · xj · xk = b is sampled).

Now, the construction is the following, where we specify how we sample one equation (hence this
gives the probability distribution).

• Variables: {±1}n (hence, the assignment is a boolean function f : {±1}n → {±1}).

• Sample x ∈ {±1}n and y ∈ {±1}n independently, let z = ⟨x, y⟩.

• Output f(x) · f(y) · f(z) = 1.

Note. Notice that this construction is deterministic, i.e., we can specify the weight of each possible
equations directly. But we just use the probabilistic language.

To see why this is what we want, notice that if f = χS for some S ⊆ [n], then for all x, y ∈ {±1}n,

f(x)f(y)f(z) = xSyS(x · y)S = 1,

hence obj(f) = 1! On the other hand, if f has k nonzero Fourier coefficients (i.e., f is far from any χS)
of value 1/

√
k, then obj(f) ≈ 1/2. This construction is known as BLR test [BLR90].

Theorem 7.3.1 ([BLR90]). Under the construction, obj(f) = 1/2 + 1/2 ·
∑

S⊆[n] f̂(S)
3.

Proof. Observe that

obj(f) = Ex,y [1 [f(x)f(y)f(z) = 1]]

= Ex,y

[
1

2
+

1

2
f(x)f(y)f(z) = 1

]
=

1

2
+

1

2
Ex,y [f(x)f(y)f(z)] .

Now, we decompose f(x), f(y), f(z) with respect to the Fourier basis, i.e., f(x) =
∑

S f̂(s)χS(x)
we have

obj(f) =
1

2
+

1

2
Ex,y

 ∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U) · χS(x)χT (y)χU (z)


=

1

2
+

1

2

∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U) · Ex,y [χS(x)χT (y)χU (z)] .

Since for fixed S, T, U ,

Ex,y [χS(x)χT (y)χU (z)] = Ex,y

[
xS · yT · (x · y)U

]
= Ex,y

[
xS∆UyT ;∆U

]
= Ex

[
xS∆U

]
Ey

[
yT∆U

]
=

{
1, if S = U and T = U ;

0, otherwise.

Hence,

obj(f) =
1

2
+

1

2

∑
S⊆[n]

f̂(S)3.

■

We see that if we only require f to have high value when it is corresponding to χS , then we’re done.
But actually, what we want is when S is a singleton set, and hence we need more works.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 86

Lecture 23: Noisy BLR Test and Unique Games Conjecture

7.3.2 Noisy BLR Test
In particular, we want to eliminate the case that when S = ∅ and [n], obj(f) = 1, i.e., we want to
implement dictation test. This can be done via introducing noise. Firstly, consider the following new
3LIN instances.

• Variables: {±1}n (hence, the assignment is a boolean function f : {±1}n → {±1}).

• Sample x ∈ {±1}n and y ∈ {±1}n independently, and also b ∈ {±1}.

• For all i, let

zi =

{
xiyib, with probability 1− ϵ;
−xiyib, with probabilityϵ.

• Output f(x) · f(y) · f(z) = b.

Remark (Sanity check). If f = χ∅, obj(f) = 1/2; if f = χ[n], obj(f) ≈ 1/2.

Proof. We see that

• If f = χ∅ (i.e., f(x) = 1 for all x): obj(f) = 1/2.

• If f = χ[n] (i.e., f(x) = x1x2 . . . xn): obj(f) = Ex,y,z,b [1/2 + 1/2f(x)f(y)f(z)b]. Since

E [f(x)f(y)f(z)b] =
1

2
E [f(x)f(y)f(z)b | b = 1] +

1

2
E [f(x)f(y)f(z)b | b = −1]

=
1

2

n∏
i=1

E [xiyizi | b = 1]− 1

2

n∏
i=1

E [xiyizi | b = −1]

=
1

2
(1− 2ϵ)n − 1

2
(−1 + 2ϵ)n

=

{
0, if n is even;
(1− 2ϵ)n, if n is odd.

So, if n≫ 1/ϵ, then (1− 2ϵ)n ≤ e−2ϵn ≈ 0, i.e., obj(f) ≈ 1/2.

⊛

The above remark holds for a general f , i.e., when f is far from dictation, the value will be less than
1 significantly. To see this, let f(x) =

∑
S⊆[n] f̂(S)χS , recall that

obj(f) = Ex,y,z,b

[
1

2
+

1

2
f(x)f(y)f(z)b

]
=

1

2
+

1

2

∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U)E [χS(x)χT (y)χU (z)b] ,

hence we’re interested in

Ex,y,z,b [χS(x)χT (y)χU (z)b] =
1

2
E [χS(x)χT (y)χU (z) | b = 1]− 1

2
E [χS(x)χT (y)χU (z) | b = −1]

for a fixed S, T, U ⊆ [n]. Notice that in this expectation, things are independent among the coordinate,
i.e., if S contains i, then xi will appear in the calculation, and same for T and U . But observe the
following.

Claim. For all i ∈ [n], given b = ±1,

E [xi] = E [yi] = E [zi] = E [xiyi] = E [xizi] = E [yizi] = 0

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 87

Lecture 23: Noisy BLR Test and Unique Games Conjecture

Proof. Consider the case that b = 1, since

zi =

{
xiyi, w.p. 1− ϵ;
−xiyi, w.p. ϵ;

, xizi =

{
yi, w.p. 1− ϵ;
−yi, w.p. ϵ,

we have that E [xizi] = (1− ϵ)E [yi]− ϵE [yi] = 0. The same holds for b = −1 as well. ⊛

And hence, we see that only E [xiyizi] is left, with

E [xiyizi | b = 1] = 1− 2ϵ, E [xiyizi | b = −1] = −1 + 2ϵ.

This suggests that

E [χS(x)χT (y)χU (z) | b = 1] =

{
(1− 2ϵ)|S|, if S = T = U ;

0, otherwise.

E [χS(x)χT (y)χU (z) | b = −1] =

{
(−1 + 2ϵ)|S|, if S = T = U ;

0, otherwise.

And hence,

Ex,y,z,b [χS(x)χT (y)χU (z)b] =

{
(1− 2ϵ)|S|, if S = T = U and |S| is odd;
0, otherwise,

implying that

obj(f) = Ex,y,z,b

[
1

2
+

1

2
f(x)f(y)f(z)b

]
=

1

2
+

1

2

∑
S,T,U⊆[n]

f̂(S)f̂(T)f̂(U)E [χS(x)χT (y)χU (z)b]

=
1

2
+

1

2

∑
|S| odd

f̂(S)3(1− 2ϵ)|S|.

We then conclude that if f = χi, then obj(f) = 1− ϵ; and if f = χS ,

obj(f) =


1

2
+

1

2
(1− 2ϵ)|S|, if |S| is odd;

1

2
, if |S| is even.

So f has 1/ϵ2 Fourier coefficients of ϵ, leading to

obj(f) ≤ 1

2
+

1

2

1

ϵ2
ϵ3 =

1

2
+
ϵ

2
.

Although this is nice and is what we want, but to do the full reduction from label cover to 3LIN, we will
need a lot more work.

7.4 Unique Games
Thankfully, to prove Theorem 7.1.1, we can instead show the reduction from unique games to 3LIN.1

Problem 7.4.1 (Unique game). Given a d-regular bipartite graph G = (U ⊔V, E) with |U | = |V | = n,
with two label sets R ⊔ R (one for each U , V) such that for all e = (u, v) ∈ E , we have a bijection
Πe : [R] → [R]. The label cover problem asks for an assignment σ : U ⊔ V → R maximizes the
satisfied edges.

1Although as we noted, this can be done directly without any conjecture.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 88

Lecture 24: From Unique Games to 3LIN

Remark. We see that the unique game problem is a special case of label cover, where now the
label sets are the same on both sides, and the projection becomes a bijection, i.e., we now have
uniqueness.

VU

2

1

2

R = Z3

Π(r) = r + 1 (mod 3)

Π(0) = 1,Π(1) = 0,Π(2) = 2

The uniqueness plays an important role here: since an assignment to one vertex uniquely determines
all its neighbors, which implies the following.

Claim. The (1, 1)-Gap unique game has a polynomial time algorithm.

Proof. Assume that G is connected, then pick an arbitrary vertex v, we just try all labels and
propagate. If there is an assignment satisfying every edge, we can find it this way. ⊛

On the other hand, given a label cover instance, even if we are told that there is a perfect assignment,
we still can’t find it. But interestingly, we hypothesize the following.

Conjecture 7.4.1 (Unique games conjecture [Kho02]). For every ϵ > 0, there exists R = R(ϵ) such
that the (1− ϵ, ϵ)-Gap unique game is NP-hard with R.

While Theorem 6.4.1 states that the (1, ϵ)-Gap label cover is NP-hard, unique game conjecture sug-
gests that the only difference between unique game and label cover is at the (1, 1)-Gap version, i.e., we
can solve the exact unique game, but this is the only thing we can do additionally compared to label
cover.

Remark (Optimal hardness). Assuming the unique game conjecture, for all ϵ > 0, it is NP-hard to

(a) (2− ϵ)-approximate vertex cover and feedback vertex set;

(b) c-approximate multicut for all c > 1;

(c) (αGW + ϵ)-approximate max cut.

And the above are all optimal since we have seen the corresponding approximation algorithms
before.

Additionally, if the unique game conjecture is true, then the Lasserre hierarchy is the best algorithms
for all CSPs.

Lecture 24: From Unique Games to 3LIN
28 Nov. 10:307.4.1 Unique Games to 3LIN

We now show Theorem 7.1.1, i.e., the (1−ϵ1, 1/2+ϵ1)-Gap 3LIN is NP-hard for every ϵ1 > 0 by reduction
from unique game. Given a unique game instance G = (U ⊔ V, E) and bijection {Πe}e∈E with label set
R, we construct a 3LIN instance as usual (parametrized by ϵ):

• Variable: (U ⊔ V)× {±1}R

• Assignment: Cv = {v} × {±1}R. And given assignment, fv : {±1}R → {±1} be assignment
restricted to Cv.

• Equation:2 We sample an equation such that w(eq.) = Pr(eq. is sampled) by the following.
2Again, described in probability language.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 89

Lecture 24: From Unique Games to 3LIN

– Sample (u, v) ∈ E , and x ∈ {±1}R , y ∈ {±1}R , b ∈ {±1}.
– For all i ∈ [R],

zi =

{
xΠe(i)yib, w.p. 1− ϵ;
−xΠe(i)yib, w.p. ϵ.

– Output fu(x)fv(y)fv(z) = b.

Remark. We can instead let fu(x)fv(y)fu(z) = b (with some index-changes) since in this case, u
and v are symmetric. But if we do the reduction from label cover, it’s important that we assign z
to the larger side (the right-side), i.e., v.

To show the completeness, there exists σ : U ⊔ V → R that satisfies (1 − ϵ0) fraction of E . Then
the solution for 3LIN is (v, x) ← xσ(v), i.e., fv = χ{σ(v)}, or by using the notion of dictator, fvgχσ(v).
Given that e = (u, v) is sampled and e is satisfied. Then σ(u) = Πe(σ(v)), so the equation is satisfied if
fu(x)fv(y)fv(z) = b, i.e.,

xσ(u)yσ(v)zσ(v) = b⇔ xΠe(σ(v))yσ(v)zσ(v) = b,

which implies the equation is satisfied with probability at least 1 − ϵ. Finally, since we assume that
there is (1− ϵ0) fraction of E is satisfied, we know that the total fraction of satisfied equations is at least
(1− ϵ0)(1− ϵ), which completes the completeness.

To show the soundness, given {fv}v∈U⊔V , fix e = (u, v). Now, let g := fv and

f(x) := fu(x
′) where xi = x′Πe(i)

.

Note. We’re enforcing f and g to use the same coordinate essentially. Furthermore, in this case,
for all i ∈ [R]

zi =

{
xiyib, w.p. 1− ϵ;
−xiyib, w.p. ϵ,

i.e., we permute the coordinate back in terms of z, which simplifies the analysis.

Given e,

Pr
x′,y,z,b

(fu(x
′)fv(y)fv(z) = b) = Pr

x,y,z,b
(f(x)g(y)g(z) = b)

=
1

2
+

1

2
Ex,y,z,b [f(x)g(y)g(z)b]

=
1

2
+

1

2

∑
S,T,U⊆[R]

f̂(S)ĝ(T)ĝ(U)E [χS(x)χT (y)χU (z)b] .

We now see that we get back E [χS(x)χT (y)χU (z)b]!

As previously seen. From the previous analysis, we have

E [χS(x)χT (y)χU (z)b] =

{
(1− 2ϵ)|S|, if S = T = U with |S| odd;
0, otherwise.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 90

Lecture 25: Hardness of Max-Cut

Hence, we have

Pr
x′,y,z,b

(fu(x
′)fv(y)fv(z) = b) =

1

2
+

1

2

∑
S odd

f̂(S)ĝ(S)2(1− 2ϵ)|S|︸ ︷︷ ︸
(f̂(S)ĝ(S)(1−2ϵ)2|S|)·ĝ(S)

≤ 1

2
+

1

2

(∑
S odd

f̂(S)2ĝ(S)2(1− 2ϵ)2|S|

)1/2(∑
S odd

ĝ(S)2

)1/2

︸ ︷︷ ︸
≤1

≤ 1

2
+

1

2

(∑
S odd

f̂(S)2ĝ(S)2(1− 2ϵ)2|S|

)1/2

︸ ︷︷ ︸
:=δ(e)

.

Now, to construct a unique game instance, for all v ∈ U ⊔ V , we sample S ⊆ [R] with probability f̂(S)2,
and then we just let σ(v) to be a random element from S. Let t ∈ N to be undetermined. We say S is
big if |S| > t, otherwise small. Then

δ(e) ≤
∑

S odd, small

f̂(S)2ĝ(S)2 +
∑

S odd, big

f̂(S)2ĝ(S)2(1− 2ϵ)t

=
∑

S odd, small

f̂(S)2ĝ(S)2 + (1− 2ϵ)t
∑

S odd, big

f̂(S)2ĝ(S)2︸ ︷︷ ︸
≤
∑

S,T f̂(S)2ĝ(S)2=1

≤
∑

S odd, small

f̂(S)2ĝ(S)2 + (1− 2ϵ)t.

Formally, given a 3LIN instance, {fv}v with obj > 1/2 + γ, we have at least γ/2 fraction of e ∈ E has
obje ≥ 1/2 + γ/2.

Note. This is true, since otherwise, the objective value is at most

γ

2
· 1 +

(
1− γ

2

)(1

2
+
γ

2

)
<

1

2
+ γ,

which is a contradiction.

Fix a good e = (u, v) with δ(e) ≥ γ2, i.e.,∑
S odd, small

f̂(S)2ĝ(S)2 + (1− 2ϵ)t ≥ γ2.

Recall that g = fv, f(x) = fu(x
′) with xi = x′Π(i), we have

f̂(S) = f̂u(Π(S)) where Π(S)g {Π(i) : i ∈ S} ,

so we have ∑
S odd, small

f̂v(S)
2f̂u(Π(S))2 ≥ γ2 − (1− 2ϵ)t.

Then, we have

Pr(e is satisfied by the UG assignment) ≥ γ2 − (1− 2ϵ)t

t
,

implying

Pr
overall

(UG assignment satisfied) ≥
(γ
2

)(γ2 − (1− 2ϵ)t

t

)
.

Now, to finish everything, we let ϵ1 := γ > 0, ϵ := γ/2 and ϵ0 := γ5/4. Then, we know that by letting
t = ⌈1/γ2⌉,

(1− 2ϵ)t ≤ e−2ϵt ≤ e−1/γ .

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 91

Lecture 25: Hardness of Max-Cut

So the completeness follows from the fact that if OPTUG ≥ 1− ϵ0,

OPT3LIN ≥ (1− ϵ)(1− ϵ0) ≥ 1− ϵ− ϵ0 ≥ 1− γ = 1− ϵ0.

Also, the soundness follows from that fact that if OPT3LIN ≥ 1/2 + γ = 1/2 + ϵ0, OPTUG ≥ γ = ϵ0.

Lecture 25: Hardness of Max-Cut
30 Nov. 10:307.5 Hardness of Max-Cut

In this section, we will see that if we assume the unique game conjecture, then Theorem 5.1.2 is actually
the best we can do, i.e., we have the following.

Theorem 7.5.1 ([Kho+04]). Assuming the unique game conjecture, for every ϵ > 0, it’s NP-hard to
approximate max cut within a factor of αGW + ϵ.

As previously seen. Recall that the Goemans-Williamson constant αGW is defined as

αGW := max
a∈[−1,1]

arccos(a)/π

(1− a)/2
≈ 0.878,

which is the approximation ratio achieved by Algorithm 5.1.

Just like 3LIN, we design a dictator-ship test, namely to create an instance (a graph) G = (V, E) for
V := {±1}R such that

• dictator cuts (for some i ∈ [R], S = {x ∈ {±1}R : xi = 1}) get good value (cut many edges);

• cuts far from dictator get small value (don’t cut many edges).

Such a test is done is again done via noisy hypercube construction.

7.5.1 Noisy Hypercube
To start with, let ρ ∈ [−1,+1], let Gρ = (V, E) with edge-weight such that the total weight sums up to
1. This allows us to sample an edge by first sample x ∈ {±1}R uniformly, and for all i ∈ [R], let

yi =

{
xi, w.p. (1 + ρ)/2;

−xi, w.p. (1− ρ)/2,

and output (x, y) ∈ E .

Notation. For any (x, y) ∈ E in Gρ, we denote x ∼
ρ
y.

We see that for all i ∈ [R], Ex∼
ρ
y [xiyi] = 1 · (1 + ρ)/2− 1 · (1− ρ)/2 = ρ.

Note. At the end, we’ll try ρ < 0.

Let Tρ ∈ R2R×2R be the normalized adjacency matrix of Gρ such that

Tρ(x, y) = Pr(y is sampled | x is sampled) = Pr((x, y) is sampled) · 2R.

We see that the sum of entries is 2R, and rows and columns sum up to 1. Given a cut (S, T), consider
f : V → {±1} such that

f(x) =

{
1, if x ∈ S;
−1, if x ∈ T.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 92

Lecture 25: Hardness of Max-Cut

Claim. Given (S, T), the total weight of edges cut by (S, T) in Gρ is equal to

1

2
(1− ⟨f, Tρf⟩).

Proof. The total weigh of cut edges is equal to

Ex∼
ρ
y

[
1

2
(1− f(x)f(y))

]
=

∑
(x,y)∈E

w(x, y) · 1
2
(1− f(x)f(y)).

Then, since

Ex∼
ρ
y [f(x)f(y)] =

∑
x∈V

∑
y∈V

1

2R
Pr(y | x)f(x)f(y) = 1

2R

∑
x∈V

f(x)
∑
y∈V

Pr(y | x)f(y)︸ ︷︷ ︸
(Tρf)(x)=Ex∼

ρ
y [f(y)]

= ⟨f, Tρf⟩ ,

so we’re done. ⊛

Definition 7.5.1 (Stability). The stability of f given ρ is defined as

Stabρ(f) := ⟨f, Tρf⟩ = Ex∼
ρ
y [f(x)f(y)] .

Remark. If f is ±1-valued, then Stabρ(f) = 2Prx∼
ρ
y(f(x) = f(y))−1. So if f(x) ≈ f(y) for y being

the neighbor of x (i.e., x ∼
ρ
y), this quantity is stable and close to 1.

To study Stabρ(f), consider S ⊆ [R] and χS , we have

Stabρ(χS) = Ex∼
ρ
y

[
xSyS

]
=
∏
i∈S

E [xiyi] = ρ|S|

since χS(x) = xS =
∏

i∈S xi. Now, since

f =
∑

S⊆[R]

f̂(S)χS ,

we have
⟨f, Tρf⟩ =

∑
S,T

f̂(S)f̂(T) ⟨χS , TρχT ⟩ =
∑

S⊆[R]

f̂(S)2 · ρ|S|

since TρχT = ρ|T | · χT . So if f = χi for some i ∈ [R], the cut value is equal to

1

2
− 1

2
Stabρ(f) =

1

2
− 1

2
ρ

for ρ < 0, so a dictator cuts indeed get good value.

Problem. How we define far from dictators and prove they have small values?

7.5.2 Majority is The Stablest Theorem

Consider f : {±1}R → {±1} as voting rules:

• R people;

• x ∈ {±1}R corresponds to a voting outcome;

• Society goes with f(x).

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 93

Lecture 25: Hardness of Max-Cut

Example (Majority). We can take f(x) to be the majority vote, i.e.,

f(x) = Maj(x) := sgn(x1 + · · ·+ xR).

Example (Dictator). We can also take f(x) to be following a dictator i, i.e.,

f(x) = Dictatori(x) := xi.

Definition 7.5.2 (Influence). Given f : {±1}R → {±1}, for an i ∈ [R], the influence Infi(f) of i is
defined as

Infi(f) := Pr
x
(f(x) ̸= f(x⊕ ei)) =

∑
S∋i

f̂(S)2.

But one problem of Definition 7.5.2 is that the total influence is not the same for all f , since

I(f) :=
∑
i∈[R]

Infi(f) =
∑

S⊆[R]

f̂(S)2|S|.

Note. Indeed, the total influence can vary a lot, since I(χi) = 1 while I(χ[R]) = |R|.

To fix this issue, we define the so-called

Definition 7.5.3 (δ-noisy influence). Given f : {±1}R → {±1} and δ ∈ (0, 1), for an i ∈ [R], the
δ-noisy influence Infδi (f) of i is defined as

Infδi (f) :=
∑
S∋i

f̂(S)2(1− δ)|S|−1.

In this case, the total δ-noisy influence Iδ(f) is given by

Iδ(f) =
∑

S⊆[R]

f̂(S)2|S(1− δ)||S|−1.

Claim. We have Iδ(f) ≤ 1/δ∥f∥22.

Proof. We simply maximize |S|(1− δ)|S|−1 for every S, where we simply have 1/δ. ⊛

Now, consider the majority vote Maj: {±1}R → [±1], we have

Infi(Maj) = Θ(1/
√
R), I(Maj) = Θ(

√
R);

while
Infδi (Maj) = Θ(1), Iδ(Maj) = Θ(1/R).

Now, we say that i is influential if Infδi (f) ≥ Ω(1).

Claim. As R→∞, Stabρ(Maj)→ 2/π · arcsin ρ.

Proof. Firstly, let
X =

x1 + · · ·+ xR√
R

, Y =
y1 + · · ·+ yR√

R
,

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 94

Lecture 26: A Final Reduction from Unique Games

we have E [X] = E [Y] = 0, E
[
X2
]
= E

[
Y 2
]
= 1 with E [XY] = ρ, we have

Stabρ(Maj) = Ex∼
ρ
y [sgn(x1 + · · ·+ xR) · sgn(y1 + · · ·+ yR)]

= EX,Y [sgn(X) sgn(Y)]

≈ Eg,h [sgn(g) sgn(h)]

where g, h ∼ N (0, 1) are ρ-correlated by 2-dimensional central limit theorem. Notice that we
interpret the term ρ-correlated as g = ⟨a, t⟩ = t1, h = ⟨b, t⟩ where we sample t := (t1, t2) ∼ N (0, 1)2.a
In this case, we have the same geometric interpretation as in Lemma 5.1.4, we have

Pr(sgn(g) = sgn(h)) =
π − arccos ρ

π
.

⊛
aWe implicitly rotate t1 to the x-axis from g = ⟨a, t⟩ = t1.

Finally, we need the following theorem, which is introduced in [Kho+04], and confirmed in [MOO05]
later.

Theorem 7.5.2 (Majority is the stablest [MOO05; Kho+04]). Given 0 < ρ < 1 and ϵ > 0, and
f : {±1}n → [−1, 1] with E [f] = 0. Suppose Inf

1/ log(1/ϵ)
i (f) ≤ ϵ, then

Stabρ(f) ≤
(
2

π

)
arcsin ρ+O

(
log log 1/ϵ

log 1/ϵ

)
.

Lecture 26: A Final Reduction from Unique Games
7 Dec. 10:30

Proof sketch. From Stabρ[f] = Ex∼
ρ
y [f(x)f(y)], we want to say that this is equal to Eg∼

ρ
h [f(h)f(h)]

where g ∼
ρ
h means for all i ∈ [R], gi ∼ N (0, 1), hi = ρ · g +

√
1− ρ2N (0, 1). In this case, though

f : {0, 1}[R] → {0, 1} doesn’t make sense, but if we look at the Fourier decomposition, we have

f(x) =
∑

S⊆[R]

f̂(S)xS ⇒ f(g) =
∑

S⊆[R]

f̂(S)gS .

Remark (Invariance principle). If f is low-influence, then (f(x), f(y)) is similarly distributed as
(f(g), f(h)).

Now, consider f : RR → {±1} such that E [f] = 0. With the mean condition, f is essentially
deciding a set with the measure being a half. Furthermore, for g ∼

ρ
h, we want if g is in the set, h

will be in the set as well. This is done by minimize the boundary of the set f is deciding, which
turns out to be a half-space. This corresponds to the majority vote directly, so we’re done. ■

Corollary 7.5.1. Given ρ < 0 and ϵ > 0, and f : {±1}n → [−1, 1] with E [f] = 0. Suppose
Inf

1/ log(1/ϵ)
i (f) ≤ ϵ, then

Stabρ(f) ≥
(
2

π

)
arcsin ρ+O

(
log log 1/ϵ

log 1/ϵ

)
.

7.5.3 Reduction from Unique Game
Finally, we can now prove Theorem 7.5.1. Let ρ ≈ −0.7, such that

c =
1

2
− 1

2
ρ ≈ 0.85, s =

1

2
− 1

π
arcsin ρ ≈ 0.75,

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 95

Lecture 26: A Final Reduction from Unique Games

and c/s = αGW. Fix ϵ1 > 0, choose ϵ0 and give reduction from (1 − ϵ0, ϵ0)-Gap unique game to
(c − ϵ1, s + ϵ1)-Gap max cut. Given a unique game instance G = (U ⊔ V, E) which is regular, {Πe}e∈E ,
[R], our max cut instance is designed as

• Vertex: U × {±1}R.

• Edges:

– sample v ∈ V
– sample u1, u2 ∼ N(v)3

– sample x ∈ {±1}R, and x ∼
ρ
y4

– output
(
(u1,Π1(x)), (u2,Π2(y))

)
where

(
Π1(x)

)
Π1(i)

= xi.

Completeness

To show completeness, consider a unique game instance G = (U ⊔ V, E) with a labeling σ : U ⊔ V → [R]
which satisfies 1− ϵ0 fraction of E . Let the cut indicated by fu(x) = xσ(u) for all u ∈ U be

Su :=
{
(u, x) : xσ(u) = 1

}
.

By union bound, with probability ≥ 1− 2ϵ0, we have

Pr(fu1(Π1(x)) ̸= fu2(Π2(y))) = Pr(
(
Π1(x)

)
σ(u1)

̸=
(
Π2(y)

)
σ(u2)

) = Pr(Xσ(v)̸=yσ(v)
) =

1− ρ
2

,

where Π1(σ(u)) = σ(u1) and Π2(σ(u)) = σ(u2). This means that S cuts at least (1 − 2ϵ0) × (1 − ρ)/2
fraction of edges.

Soundness

To prove soundness, suppose {fu}u∈U such that fu : {±1}R → {±1} is the assignments to the max cut
vertices with cut value ≥ 1/2− arcsin ρ/π+ ϵ1. Our goal is to get a labeling σ for the unique game with
value at least ϵ0. Firstly, we have the following.

Claim. Given the sampling procedure,

Ev,x,y [fv(x)fv(y)] ≤
(
2

π

)
arcsin ρ− 2ϵ1.

Proof. For all v ∈ V , fv : {±1}R → [−1, 1] such that fv(x) := Eu∼N(v) [fu(Πuv(x))]. Then, if we
sample v ∈ V and x ∼

ρ
y, we have

Ev,u1,u2,x,y [fu1
(Π1(x))fu2

(Π2(y))] = Ev,x,y [Eu1,u2
[fu1

(Π1(x))fu2
(Π2(y)) | v, x, y]]

= Ev,x,y [Eu1
[fu1

(Π1(x)) | v, x] · Eu2
[fu2

(Π2(y)) | v, y]]
= Ev,x,y [fv(x)fv(y)] ,

so with the fact thata

Ev,u1,u2,x,y [fu1
(Π1(x))fu2

(Π2(y))] ≤
(
2

π

)
arcsin ρ− 2ϵ1,

we’re done. ⊛
aThis follows from the sampling procedure.

3N(v) is the neighborhood of v, so e1 = (u1, v), e2 = (u2, v) ∈ E.
4x is a vertex from the hypercube of u1, and y is a vertex from the hypercube of u2. This is the dictator-ship test in

subsection 7.5.1.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 96

By Markov inequality, at least ϵ1 fraction of v satisfies

Ex,y [fv(x)fv(y)] ≤
(
2

π

)
arcsin ρ− ϵ1,

and we say that such v is good. From Theorem 7.5.2, for any good v, there exists some ϵ > 0 and i ∈ [R]
such that Infδi (fv) ≥ ϵ with some large enough δ = δ(ϵ, ρ) > 0. Naturally, we label u as σ(u) := i.

Note the following.

Remark (Fact). Given the ϵ > 0 found above, ϵ ≤ Eu

[
InfiΠuv(i)(fu)

]
.

Proof. We have

ϵ ≤ Infδi (fv) =
∑
S∋i

f̂v(S)
2(1− δ)|S|−1 from f̂(S) = Eu

[
f̂u(Πuv(S))

]
=
∑
S∋i

(1− δ)|S|−1Eu

[
f̂u(Πuv(S))

]2
≤ Eu

[∑
S∋i

(1− δ)|S|−1f̂u(Πuv(S))
2

]
= Eu

[
InfδΠuv(i)(fu)

]
.

⊛

This fact implies that at least ϵ/2 fraction of the neighbors u of v we have InfδΠuv(i)(fu) ≥ ϵ/2, and
similarly, we call such u good. To label any u ∈ U , we consider the set of candidates {j ∈ [R] : Infδj(fu) ≥
ϵ/2}, hence for all good u, Πuv(i) is one of the candidate. Observe that since∑

i∈[R]

Infδi (fu) = Iδ(fu) ≤ δ,

so the number of candidate of u is at most 2δ/ϵ. We now simply label u uniformly at random from the
set of candidates. In this case, for any good v ∈ V and u ∈ U , if u we choose is exactly Π−1

uv (σ(v)), then
this edge uv is satisfied. From a simple calculation, we know that at least

ϵ0 :=
ϵ1
2
× ϵ

2
× 2δ

ϵ
=
ϵ1δ

2

fraction of the edges are satisfied, completing the proof.

Remark. Without assuming unique game conjecture, it’s only known to be NP-hard to approximate
max cut with ratio better than 0.92. And with Theorem 7.5.1, if unique game conjecture, αGW is
optimal.

CHAPTER 7. UNIQUE GAMES AND THE CONJECTURE 97

Appendix

98

Appendix A

Review

A.1 Boolean Satisfaction Problem
Here, we give a quick review toward the MAX-3SAT problem.

Definition A.1.1 (Conjunctive normal form). A conjunctive normal form (CNF) formula is a con-
junction φ of one or more boolean clauses on x1, x2, . . . , xn with boolean valued {0, 1}. Explicitly,
φ is in CNF if

φ(x1, x2, . . . , xn) = clause1 ∧ clause2 ∧ clause3 ∧ · · · ∧ clausek

where each clause is an or of literals, with a literal being some xi or its negation ¬xi.

Note (Disjunctive normal form). For every conjunctive normal form, there is an equivalent way to
write it in the so-called disjunctive normal form.

Definition A.1.2 (k-CNF). A k-CNF formula is a CNF formula in which each clause has exactly k
literals from distinct variables.

Example (3-CNF). A 3-CNF formula can be like

φ = (x1 ∨ ¬x2 ∨ x4) ∧ (¬x3 ∨ x4 ∨ x5) ∧ (¬x1 ∨ ¬x5 ∨ ¬x6).

Now, the boolean satisfability problem asks the following question: given a k-CNF formula φ, does
an assignment exist such that φ is evaluated as true? Formally, we have Problem A.1.1.

Problem A.1.1 (k-SAT). Given a k-CNF formula φ, the k-SAT problem asks whether φ is satisfiable.

Instead of looking at a general k, we consider a simple but also hard enough case when k = 3.
Specifically, we ask the following question.

Problem A.1.2 (MAX-3SAT). Given a 3-CNF formula φ and ℓ, the MAX-3SAT problem asks is
there an assignment of variables such that it satisfies at least ℓ clauses?

Remark. We often call MAX-3SAT as 3SAT for brevity.

A.1.1 Random MAX-3SAT
A surprising result is that by randomly assigning xi, we achieve the best we can do in expectation.
Algorithmically, we have the following.

99

Algorithm A.1: Deterministic MAX-3SAT
Data: A 3-CNF φ(x1, . . . , xn)
Result: A 7/8-approximation assignment {xi}ni=1 (in expectation)

1 for i = 1, . . . , n do
2 xi ←uniform({0, 1}) // random assignments

3 return {xi}ni=1

Lemma A.1.1. For all 3-CNF φ, there exists an assignment that satisfies at least 7/8 of clauses.

Proof. Each clause is satisfied by all but exactly 1 assignment, the one where all the literals in the
clause evaluate to false. Imagine we have a uniformly random assignment of variables, and let Xi

be a random variable such that

Xi =

{
1, if ist clause is satisfied;
0, otherwise.

Since each clause has 8 different possibilities (23), and there is only one situation where the
clause is not satisfied, each clause has a probability of 7/8 of being satisfied. Therefore:

Pr(Xi = 1) =
7

8
= E[Xi].

Let X be a random variable that corresponds to the number of satisfied clauses, i.e., X =
∑n

i=1Xi.
By the linearity of expectation, we have

E[X] =

n∑
i=1

E(Xi) =
7

8
·m ≥ 7

8
OPT

This shows that if we had an algorithm that randomly picks assignments of variables and checks
to see how many clauses are satisfied, this would be a randomized algorithm that achieves α = 7

8 .
If we were then to repeat the algorithm a polynomial number of times, we could show that there is
a good chance to find such an assignment using Markov’s inequality. ■

APPENDIX A. REVIEW 100

Bibliography

[Aro+98] Sanjeev Arora et al. “Proof Verification and the Hardness of Approximation Problems”. In:
J. ACM 45.3 (May 1998), pp. 501–555. issn: 0004-5411. doi: 10.1145/278298.278306. url:
https://doi.org/10.1145/278298.278306.

[BLR90] M. Blum, M. Luby, and R. Rubinfeld. “Self-Testing/Correcting with Applications to Nu-
merical Problems”. In: Proceedings of the Twenty-Second Annual ACM Symposium on The-
ory of Computing. STOC ’90. Baltimore, Maryland, USA: Association for Computing Ma-
chinery, 1990, pp. 73–83. isbn: 0897913612. doi: 10.1145/100216.100225. url: https:
//doi.org/10.1145/100216.100225.

[BS14] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal algo-
rithms. 2014. doi: 10.48550/ARXIV.1404.5236. url: https://arxiv.org/abs/1404.5236.

[Chr76] Nicos Christofides. “Worst-Case Analysis of a New Heuristic for the Travelling Salesman
Problem”. In: Oper. Res. Forum 3 (1976).

[Coh+22] Vincent Cohen-Addad et al. Breaching the 2 LMP Approximation Barrier for Facility Loca-
tion with Applications to k-Median. 2022. doi: 10.48550/ARXIV.2207.05150. url: https:
//arxiv.org/abs/2207.05150.

[Coo71] Stephen A. Cook. “The Complexity of Theorem-Proving Procedures”. In: STOC ’71. Shaker
Heights, Ohio, USA: Association for Computing Machinery, 1971, pp. 151–158. isbn: 9781450374644.
doi: 10.1145/800157.805047. url: https://doi.org/10.1145/800157.805047.

[Fei+91] Uriel Feige et al. “Approximating clique is almost NP-complete”. In: [1991] Proceedings 32nd
Annual Symposium of Foundations of Computer Science (1991), pp. 2–12.

[Fei+96] Uriel Feige et al. “Interactive Proofs and the Hardness of Approximating Cliques”. In: J.
ACM 43.2 (Mar. 1996), pp. 268–292. issn: 0004-5411. doi: 10.1145/226643.226652. url:
https://doi.org/10.1145/226643.226652.

[GK99] Sudipto Guha and Samir Khuller. “Greedy Strikes Back: Improved Facility Location Algo-
rithms”. In: Journal of Algorithms 31.1 (1999), pp. 228–248. issn: 0196-6774. doi: https:
//doi.org/10.1006/jagm.1998.0993. url: https://www.sciencedirect.com/science/
article/pii/S0196677498909932.

[GW95] Michel X Goemans and David P Williamson. “Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming”. In: Journal of the
ACM (JACM) 42.6 (1995), pp. 1115–1145.

[Hås97] Johan Håstad. “Some Optimal Inapproximability Results”. In: Proceedings of the Twenty-
Ninth Annual ACM Symposium on Theory of Computing. STOC ’97. El Paso, Texas, USA:
Association for Computing Machinery, 1997, pp. 1–10. isbn: 0897918886. doi: 10.1145/
258533.258536. url: https://doi.org/10.1145/258533.258536.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. “A New Greedy Approach for Facility
Location Problems”. In: STOC ’02. Montreal, Quebec, Canada: Association for Computing
Machinery, 2002, pp. 731–740. isbn: 1581134959. doi: 10.1145/509907.510012. url: https:
//doi.org/10.1145/509907.510012.

[JV01] Kamal Jain and Vijay V. Vazirani. “Approximation Algorithms for Metric Facility Location
and K-Median Problems Using the Primal-Dual Schema and Lagrangian Relaxation”. In:
J. ACM 48.2 (2001), pp. 274–296. issn: 0004-5411. doi: 10.1145/375827.375845. url:
https://doi.org/10.1145/375827.375845.

101

https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/278298.278306
https://doi.org/10.1145/100216.100225
https://doi.org/10.1145/100216.100225
https://doi.org/10.1145/100216.100225
https://doi.org/10.48550/ARXIV.1404.5236
https://arxiv.org/abs/1404.5236
https://doi.org/10.48550/ARXIV.2207.05150
https://arxiv.org/abs/2207.05150
https://arxiv.org/abs/2207.05150
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/226643.226652
https://doi.org/10.1145/226643.226652
https://doi.org/https://doi.org/10.1006/jagm.1998.0993
https://doi.org/https://doi.org/10.1006/jagm.1998.0993
https://www.sciencedirect.com/science/article/pii/S0196677498909932
https://www.sciencedirect.com/science/article/pii/S0196677498909932
https://doi.org/10.1145/258533.258536
https://doi.org/10.1145/258533.258536
https://doi.org/10.1145/258533.258536
https://doi.org/10.1145/509907.510012
https://doi.org/10.1145/509907.510012
https://doi.org/10.1145/509907.510012
https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/375827.375845

[Kar72] Richard M Karp. “Reducibility among combinatorial problems”. In: Complexity of computer
computations. Springer, 1972, pp. 85–103.

[Kar93] David R Karger. “Global min-cuts in RNC, and other ramifications of a simple min-out
algorithm”. In: SODA ’93. 1993.

[Kho+04] S. Khot et al. “Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?”
In: 45th Annual IEEE Symposium on Foundations of Computer Science. 2004, pp. 146–154.
doi: 10.1109/FOCS.2004.49.

[Kho02] Subhash Khot. “On the Power of Unique 2-Prover 1-Round Games”. In: Proceedings of the
Thiry-Fourth Annual ACM Symposium on Theory of Computing. STOC ’02. Montreal, Que-
bec, Canada: Association for Computing Machinery, 2002, pp. 767–775. isbn: 1581134959.
doi: 10.1145/509907.510017. url: https://doi.org/10.1145/509907.510017.

[KKG21] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. “A (Slightly) Improved Approxi-
mation Algorithm for Metric TSP”. In: Proceedings of the 53rd Annual ACM SIGACT Sym-
posium on Theory of Computing. STOC 2021. Virtual, Italy: Association for Computing
Machinery, 2021, pp. 32–45. isbn: 9781450380539. doi: 10.1145/3406325.3451009. url:
https://doi.org/10.1145/3406325.3451009.

[Li13] Shi Li. “A 1.488 approximation algorithm for the uncapacitated facility location problem”.
In: Information and Computation 222 (2013). 38th International Colloquium on Automata,
Languages and Programming (ICALP 2011), pp. 45–58. issn: 0890-5401. doi: https://
doi.org/10.1016/j.ic.2012.01.007. url: https://www.sciencedirect.com/science/
article/pii/S0890540112001459.

[MOO05] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. 2005. doi: 10.48550/ARXIV.MATH/0503503.
url: https://arxiv.org/abs/math/0503503.

[ODo21] Ryan O’Donnell. Analysis of Boolean Functions. 2021. doi: 10.48550/ARXIV.2105.10386.
url: https://arxiv.org/abs/2105.10386.

[Rot13] Thomas Rothvoß. “The lasserre hierarchy in approximation algorithms”. In: (2013). url:
https://sites.math.washington.edu//~rothvoss/lecturenotes/lasserresurvey.
pdf.

[Ser78] Anatoliy I Serdyukov. “On some extremal walks in graphs”. In: (1978), pp. 76–79.

[Vaz02] V.V. Vazirani. Approximation Algorithms. Springer Berlin Heidelberg, 2002. isbn: 9783540653677.
url: https://books.google.com/books?id=EILqAmzKgYIC.

[WS11] D.P. Williamson and D.B. Shmoys. The Design of Approximation Algorithms. Cambridge
University Press, 2011. isbn: 9781139498173. url: https://books.google.com/books?id=
Cc%5C_Fdqf3bBgC.

BIBLIOGRAPHY 102

https://doi.org/10.1109/FOCS.2004.49
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1145/3406325.3451009
https://doi.org/https://doi.org/10.1016/j.ic.2012.01.007
https://doi.org/https://doi.org/10.1016/j.ic.2012.01.007
https://www.sciencedirect.com/science/article/pii/S0890540112001459
https://www.sciencedirect.com/science/article/pii/S0890540112001459
https://doi.org/10.48550/ARXIV.MATH/0503503
https://arxiv.org/abs/math/0503503
https://doi.org/10.48550/ARXIV.2105.10386
https://arxiv.org/abs/2105.10386
https://sites.math.washington.edu//~rothvoss/lecturenotes/lasserresurvey.pdf
https://sites.math.washington.edu//~rothvoss/lecturenotes/lasserresurvey.pdf
https://books.google.com/books?id=EILqAmzKgYIC
https://books.google.com/books?id=Cc%5C_Fdqf3bBgC
https://books.google.com/books?id=Cc%5C_Fdqf3bBgC

	Introduction
	Computational Problem
	Efficient Algorithms
	Approximation Algorithms
	Hardness

	Covering
	Set Cover
	Greedy Method
	Linear Programming Rounding
	Covering-Packing Duality
	Primal-Dual Method
	Feedback Vertex Set

	Clustering
	Introduction
	Facility Location
	k-Median
	Euclidean k-Median

	Traveling Salesman Problem
	Spanning Tree
	Negative Correlation
	Asymmetric Traveling Salesman Problem
	Symmetric Traveling Salesman Problem
	Beyond the 3 / 2 Barrier for STSP

	Semidefinite Programming and Lasserre Hierarchy
	Semidefinite Programming
	Lasserre Hierarchy
	Graph Coloring

	Hardness of Approximation
	Approximation Complexity
	Probabilistically Checkable Proofs
	FGLSS Graph
	Label Cover

	Unique Games and the Conjecture
	Optimal Hardness for 3LIN and 3SAT
	Fourier Analysis of Boolean Functions
	BLR Test and the Noisy BLR Test
	Unique Games
	Hardness of Max-Cut

	Review
	Boolean Satisfaction Problem

